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FOREWORD

NASA is engaged in a program to evaluate the potential of several
alternative engines for use as general aviation powerplants. The rotary
engine is one of the potential candidates. It is of interest because
of its relatively low weight, simplicity, compactness, low vibration,
low octane fuel requirement, and possible multifuel capability. A
1-day symposium on rotary engines was held at the NASA Lewis Research
Center, Cleveland, Ohio, to provide those interested with an update
on the state of development of these engines as potential powerplants
in both aircraft and automobiles. This proceedings of the symposium
includes the seven papers presented at the symposium.

The symposium was coordinated by Phillip R. Meng of the Lewis
Research Center.

Edward A. Willis
NASA Lewis Research Center
Chai rman

Robert Brooks
Audi NSU Auto Union
Cochairman
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OVERVIEW OF NASA GENERAL AVIATION PROGRAM

Roger L. Winblade
NASA Headquarters

During the past five years, the NASA efforts devoted to
new technology for general aviation have grown steadily.
As described in previous statements, and as illustrated
in Figure 1, our efforts have been focused in three
areas: (1) improved safety through improved crashworthy
structural design, spin resistance, and improved
operations around uncontrolled airports; (2) reduced
environmental impact for both reciprocating and turbine
engines; and (3) research for improvement in the perform­
ance of both aerodynamic and system components.
Figure 2, illustrates a few of the 14 production and
prototype aircraft developed by industry that employ new
technology generated by this program.

While our current and past efforts have been productive
in terms of providing new technology for,improved
capability in general aviation aircraft, the critical
needs of the future will require a shift of emphasis as
illustrated by Figure 3.

While no abrupt change is envisioned, much of the current
activity shown on the left will, over the next several
years, become more directly aimed at technology for
increased utility and energy efficiency while maintaining
a significant emphasis on improved safety.

The R&T program planned for Fiscal Year 1979, while
comprised to a large extent of continuing activities, does
contain some elements relating to the new areas of
emphasis.

Continuing programs in technology for improved safety are
illustrated in Figure 4. The principal effort devoted
to uncontrolled airport traffic involve • the demonstration
of an automatic pilot advisory system to provide pilots
near nontower-equipped airports with up-to-date airport
and traffic information. Since our hearings last
September, we have been working with the FAA to develop
a formal interagency agreement on a cooperative program
that insures compatibility of this concept with the
automated terminal service project underway in the FAA.
By the end of FY 1978, both concepts will be in opera­
tional demonstration and evaluation status. At that
point, data from the evaluations will be used by the FAA
to identify the most effective system concepts as a
function of airport activity. In FY 1979 and beyond,
NASA efforts in the evaluation will be in direct support
of the FAA.



Improved crashwrthiness through new structural design
techniques is the objective of a continuing joint effort
with the FAA. In FY 197 9, the series of impact tests
with standard general aviation aircraft will be com­
pleted by conducting a limited number of tests with a
velocity augmentation system utilizing small rockets to
increase the impact velocity up to 90 miles per hour
(mph)—30 mph over the maximum free-fall speed. This
rocket system was evaluated in a recent test at 75 mph.
The higher velocity tests will duplicate some of the
impact angles in earlier lower velocity tests to provide
comparative data on the effects of higher speeds. In
addition, two energy-absorbing seats will be tested in
the full-scale impact tests. These seats are being
evaluated in sled tests at the FAA Civil Air Aeromedical
Institute (CAMI) in Oklahoma City in FY 1978. The
FY 1979 tests of the two seat concepts will verify their
performance and their suitability for application by the
general aviation industry. In another important area,
structural concepts capable of substantially increasing
the energy-absorbing capability of a fuselage will be
fabricated and components will be impact tested during
FY 1979. A significant increase in the efforts devoted
to improved stall/spin characteristics was implemented
in FY 1978 and will continue in FY 1979. The augmented
efforts have a considerably broader scope than was
possible in the past and are now addressing three addi­
tional critical factors.

Determination of aerodynamic characteristics at high
angles of attack, stall/spin-prevention concepts and the
development of criteria for emergency spin recovery
systems are areas of research now being pursued in
addition to the previous efforts in developing test
techniques, defining normal spin recovery design
criteria and consulting with the industry on specific
problems. Following the FY 1978 flight evaluation of
a modified high-wing aircraft, the FY 1979 program will
include a T-tail configuration and begin the study of
light twin-engined aircraft.

As illustrated in Figure 5, ongoing efforts in the
development of more efficient aerodynamic components, such
as airfoils and high lift devices, will continue in FY
1979. The concentration on drag reduction techniques
is intended to provide a generalized design procedure
that will reduce the need for the current cut-and-try
flight test approach to drag clean-up. In addition,
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results of ongoing work in the Conventional-takeoff-and-
landing (CTOL) area to develop low drag coatings for
aerodynamic surfaces will be examined for applicability
to light aircraft -

Benefits from a particular aerodynamic improvement, such
as a high-lift airfoil or reduced drag through the use
of winglets, will not necessarily be achieved when
integrated into an aircraft as a modification. Begin­
ning in FY 1978, and continuing, is an effort to provide
guidelines for optimum integration of new aerodynamic
capabilities into current configurations. A similar
effort will explore potential efficiency improvements
from new or novel configurations.

Illustrated in Figure 6, are several areas that are
being investigated in an effort to provide greater
propulsive efficiency. Turbine engines,' both fan and
shaft versions, appear to be gaining acceptance across a
wider spectrum of aircraft types. Less maintenance,
lower cost of turbine fuel, broader tolerance to fuels,
and high combustion efficiency make these engines
potentially viable alternatives to reciprocating engines
in the above-400-horsepower class.

The Quiet, Clean, General Aviation Turbofan (QCGAT) engine
will be completed in FY 1979. Following the evaluation
tests by the two contractors, the engines will be
delivered to NASA. Subsequent efforts beyond FY 1979
will concentrate on in-house verification testing and
performance evaluation at the Lewis Research Center.

Existing turbine engines are too large for application
to all but the largest general aviation aircraft. In
FY 1978, four contractors have undertaken preliminary
definition studies of small, 400-horsepower, 800-pound-
thrust turbine engines. In FY 1979, detailed definition
studies will be initiated including a careful evaluation
of the airframe requirements to properly incorporate such
an engine into the aircraft.

Significant losses are encountered during the installation
of reciprocating engines. Drag generated by cooling
requirements, cowling drag and adverse interactions
between the propeller and the nacelle are estimated to
be from 5 to 20 percent of the cruise drag of current
aircraft. Ongoing studies in each of these areas will
provide design procedures and data for optimizing engine
installations.



Closely coupled to these tasks are the efforts in
propeller optimization. During FY 1979, design and
fabrication of model hardware for propeller/nacelle flow
field investigations will be underway, as will research
on advanced blade sections.

More basic studies of fuel tolerance and cycle effi­
ciency, including evaluation of diesel and rotary
engines, will continue during FY 1979.

As illustrated in Figure 7 , the utility of light aircraft
as a mode of transportation is heavily dependent upon
the ability to operate in adverse weather and a complex
air traffic system. While accomplished routinely by
the airlines, the differences in airborne equipment,
operational requirements, ground facilities and flight
crew make general aviation instrument operations
considerably more challenging. Continuing research on
advanced integrated avionics, studies of advanced
navigation concepts and previous work on stability,
control and handling qualities for general aviation
represent a technology base that is available for
improving the safety and reliability of instrument
flight.

Information available to us through the Aviation Safety
Reporting System (ASRS) and other sources indicates a
number of problems exist with single-pilot instrument-
flight-rule (IFR) operations. During FY 1979, we will
be initiating efforts to isolate the most critical prob­
lems so that we may begin, in consultation with users
and FAA, to explore concepts for resolving them.

Our approach will be to establish realistic operating
scenarios and, through simulation, identify the operating
and procedural conditions adversely affecting the
single pilot’s flying task. Although premature to speak
about specific areas we would investigate to resolve
problems, we envision that we may be looking into such
matters as charting, training requirements, and air
traffic control (ATC) procedures. In addition to the
work outlined here, we also will be defining plans for
examining single-pilot IFR issues within the context of
the cockpit-displayed traffic information program des­
cribed earlier in the testimony.

A symposium on Short-Haul, Small Community Air Service
was held at the Ames Research Center in early FY 1978.
Participants represented all facets of the industry
providing small community air service, including
researchers, regulators, manufacturers and operators.
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In general, the purpose was to identify what, if any,
technologies should be developed to enhance this very
vital segment of civil air transportation.

Current airline service and future prospects were
examined as were the results of past studies. Aircraft
design and operating system requirements were reviewed
in terras of technology opportunities and some related
NASA research programs.

Conclusions resulting from these deliberations were that
there is a lack of an appropriate sized and performing
modern aircraft available to the commuter market and
that, in general, shrinking of current transport technology
much below 50-60 passengers would not be economically
viable.

As illustrated in Figure 8, a study was initiated in
FY 1978 to explore what, if any, technology limits exist
that preclude the general aviation industry's development
of a larger aircraft matched to the commuter airline
requirements. FY 1979 activities will continue these
studies, concentrating on definition of the appropriate
NASA role in resolving any problems identified in the
current study.

The utility and productivity of aircraft dedicated to
the performance of a special mission can be enhanced if
the aircraft is specifically tailored to the require­
ments of the task. Such is the situation with aircraft
used to apply agricultural materials.

Since the primary transport mechanism for the materials,
once ejected from the aircraft, is wake generated by the
aircraft, the width of the pattern and its evenness are
directly influenced by the uniformity of the downwash.
As illustrated in Figure 9 , the wake of the aircraft and
the propeller slipstream seriously detract from the
ability to apply a uniform layer of material.

Relying on facilities and techniques developed in the
study of trailing vortices, model tests and analytical
studies will be carried out to define acceptable mod­
ifications to current aircraft that will improve the
uniformity of the pattern by tailoring the wake
characteristics. While a relatively low-level effort,
it does capitalize on a unique area of expertise within
NASA and does hold the promise of significant return if
successful.

In summary the general aviation research and technology
program planned for FY 1979 is well balanced and is 

indu.tr


addressing the most critical problems identified as
future limits to growth. This shift in emphasis away
from the near-term problems to a next generation timeframe
in aerodynamics, propulsion and avionics is compatible
with the time required for the evaluation and incorpo­
ration of new technology by the industry.
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GENERAL AVIATION ENERGY-CONSERVATION RESEARCH PROGRAMS

AT NASA LEWIS RESEARCH CENTER

Edward A. Willis
NASA Lewis Research Center

SUMMARY

A review is presented of non-turbine General aviation engine pro-
’rams underway at the NASA-Lewis Research Center in Cleveland, Ohio. The
pronr n encompasses conventional, lightweight diesel and rotary engines.
Its three major thrusts are, in order of priority: (a) reduced SFC's;
(b) in roved fuels tolerance; and (c) reducing emissions. Current and
plan: ?d future programs in such areas as lean operation, improved fuel
management, advanced cooling techniques and advanced engine concepts, are
described. These are expected to lay the technology base, by the mid to
latter 1930's, for engines whose total fuel costs are as much as 30% lower
than today's conventional engines.

INTRODUCTION

General aviation fuel costs have nearly doubled since 1973 and the
industry has been plagued by intermittent shortages of specialized fuel
grades. The oil companies statements at this Conference, for instance,
indicate that avgas may rise to $1.50 per gallon or more by 1982. This
situation is believed likely to continue and become progress!vely worse in
the forseeable future. It is particularly a problem for the piston-engine
segment of the general aviation fleet, because these engines reflect a
W.W. II level of technology and require very specific grades of gasoline. The
industry apparently lacks the independent financial and technological means
in such areas as advanced combustion and cooling research, to significantly
enlarge the fuel tolerance of either current or next-generation engines. Al­
though the/^200,000 general aviation airplanes supply essential transportation
services to about 13,200 airports (compared to 425 served by commercial air­
lines), avoas represents only about 0.3% of the total transportation fuels
market. This may be too small to significantly constrain the refiners' future
product split decisions. Government pressures toward the most energy-efficient
product split from available crudes and other raw materials, may well have a
greater impact on these decisions. It is therefore appropriate that Govern­
ment technology be applied to help solve the resulting problems.

13
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More recently, in view of t has shifted toward fuel conservation
lntdnmultifuetieand/5rSbroad specification fuels capability. Figure 1 illustrates
our relation to other general aviation programs withm the Lewas organization.

In broad terms, our aim is to enable light planes to burn as little
as possible of the cheapest fuels available. More sped fl cal ly, our long-
term (1985) objective is to lay the technology base for an efficient, reason­
ably priced multifuel or alternative fuel engine whose fuel costs (based on
1977 dollars and prices) could be as much as 30% less than present day engines.
Because of product longevity and comparatively low annual production rates,
the benefits of a next-generation multifuel engine, although valuable to the
individual owner or operator, would require a period of years to significantly
upgrade the overall fleet. Hence the program necessarily also includes con­
sideration of applicable technology for current-production type engines. We
would prefer, however, to leave any detailed discussion of near-term develop­
ments to the respective engine companies. This discussion will therefore
address the longer-term prospects, including a couple of often-overlooked and
much-neglected concepts — the rotary and the
now see as having considerable promise in the

PROGRAM TO DATE

Several Lewis accomplishments to date deserve mention. Three sophis­
ticated engine test cells have been built from scratch, with one more in
progress. Figure 2 indicates the capabilities and leading features of the
currently-operational cells. Figure 3(a) is a view inside the aircraft engine
test cell, with the engine (a TSI0-360) in the foreground. The cooling-air
hood has been removed for clarity and the electric motoring dynamometer may be
seen at the left. The associated control room is shown in Figure 3(b) TheseInghly automated cells feature real-time data read? ? vi mo or e h-
noloqy and we beheve that they compare favorably with any of their kind in
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audible signs of rough running. Neverthelessh m?P a*or could detect visual or
misfire (the small negative bar) can be slow burns and one outright
emissions and SFC. The high IMEP's seen i^Ai-h S r®sulbs in increased HC
peak pressure and possibly detonation With Sycles 1S indicative of high
capabilities, the test engineer can make cu?o. aid of Such real-time data
every time. Lengthy delays for data redur+iZ t0 qood data the first time,
properly utilized, the automated test cell ™ k*"6 arqely eliminated. If
productive than a conventional cell can be an Ofder of magnitude more
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Using these in-house facilities and other Lewis resources, together
with a continuing series of industry contracts, we have completed substantial
programs in such areas as: basic engine characterization (Ref. 1); effect of
temperature, humidity and lean operation on fuel economy, emissions and cooling
requirements (Ref. 2); hydrogen enrichment of fuel (Ref. 3); and theoretical
analyses of cooling fins (Ref. 4). Also, progress has been made toward the
development of advanced analytical tools such as an Otto Cycle performance and
emissions prediction computer code (Ref. 5).

The results from these plus the contract programs are such that we
expect to demonstrate, by the end of 1979, the technology base to approach
or meet the former emissions standards. This is not a moot accomplishment,
since reducing emissions is clearly desirable even if no longer mandatory.
Also, most of the programs led to be fuel-conservative accomplishments as well.
For example, large amounts of scatter observed in prior emissions data prompted
us to include the effects of atmospheric temperature and humidity in our own
program. Typical results obtained in the aircraft engine test cell with
conventional mixture control are shown in Figure 5(a). The HC emissions level
is plotted vs. temperature for relative humidities of 0 and 80%. The level
increased by a factor of about 4 between "cool, dry" and "hot, humid" con­
ditions. The fuel/air ratio increased by about 20% at the same time due to
the decreased air density and displacement of air by water vapor. Since the
engine was run at constant speed/load conditions, fuel consumption suffered by
the same amount. A second series of tests, illustrated in Figure 5(b) was
run to evaluate the situation when the fuel/air ratio was held constant at the
"cool, dry" value of 0.093. The result, as shown by the solid curve between
the two shaded regions (representing 80% humidity) was a much smaller increase
in HC emissions. Since fuel/air was held constant, there was no penalty in
fuel consumption. The upper curve represents the 80% humidity case previously
shown, where the conventional mixture control allowed fuel/air to vary. The
shaded area between the two curves shows that most of the initially observed
increase in HC was due to the induced change in fuel/air. The lower shaded
area illustrates the smaller increase due to changes in temperature and humidity
alone. From these results, it is clear that an automatic mixture control
system, capable of holding a desired fuel/air ratio despite atmospheric variations,
is needed to improve both fuel economy and emissions.

The hydrogen injection program is another case in point. Both in our
own programs (Ref. 3) and a parallel JPL effort (Ref. 6) it was initially
thought that the free hydrogen, by permitting leaner operation, would improve
both economy and emissions. A considerable amount of extra spark advance was
required to support lean operation, whether hydrogen was used or not. The
results are illustrated in Figure 6, where SFC is plotted vs. mixture strength
at typical load conditions for an automotive engine (NASA) and an aircraft
engine (JPL). Operation with gasoline only is represented by the solid curves
while the dashed curves denote gasoline plus the indicated amounts of hydrogen.
In each case the spark advance was maintained at an optimum or near-optimum
setting, typically 30° - 35° BTDC for the aircraft engine and over 40° for the
auto engine. Under these conditions, the minimum SFC buckets occurred with
gasoline only even though the auto engine's lean limit was noticeably extended
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Using these in-house facilities and other Lewis resources, together
with a continuing series of industry contracts, we have completed substantial
programs in such areas as: basic engine characterization (Ref. 1); effect of
temperature, humidity and lean operation on fuel economy, emissions and cooling
requirements (Ref. 2); hydrogen enrichment of fuel (Ref. 3); and theoretical
analyses of cooling fins (Ref. 4). Also, progress has been made toward the
development of advanced analytical tools such as an Otto Cycle performance and
emissions prediction computer code (Ref. 5).

The results from these plus the contract programs are such that we
expect to demonstrate, by the end of 1979, the technology base to approach
or meet the former emissions standards. This is not a moot accomplishment,
since reducing emissions is clearly desirable even if no longer mandatory.
Also, most of the programs led to be fuel-conservative accomplishments as well.
For example, large amounts of scatter observed in prior emissions data prompted
us to include the effects of atmospheric temperature and humidity in our own
program. Typical results obtained in the aircraft engine test cell with
conventional mixture control are shown in Figure 5(a). The HC emissions level
is plotted vs. temperature for relative humidities of 0 and 80%. The level
increased by a factor of about 4 between "cool, dry" and "hot, humid" con­
ditions. The fuel/air ratio increased by about 20% at the same time due to
the decreased air density and displacement of air by water vapor. Since the
engine was run at constant speed/load conditions, fuel consumption suffered by
the same amount. A second series of tests, illustrated in Figure 5(b) was
run to evaluate the situation when the fuel/air ratio was held constant at the
"cool, dry" value of 0.093. The result, as shown by the solid curve between
the two shaded regions (representing 80% humidity) was a much smaller increase
in HC emissions. Since fuel/air was held constant, there was no penalty in
fuel consumption. The upper curve represents the 80% humidity case previously
shown, where the conventional mixture control allowed fuel/air to vary. The
shaded area between the two curves shows that most of the initially observed
increase in HC was due to the induced change in fuel/air. The lower shaded
area illustrates the smaller increase due to changes in temperature and humidity
alone. From these results, it is clear that an automatic mixture control
system, capable of holding a desired fuel/air ratio despite atmospheric variations
is needed to improve both fuel economy and emissions.

The hydrogen injection program is another case in point. Both in our
own programs (Ref. 3) and a parallel JPL effort (Ref. 6) it was initially
thought that the free hydrogen, by permitting leaner operation, would improve
both economy and emissions. A considerable amount of extra spark advance was
required to support lean operation, whether hydrogen was used or not. The
results are illustrated in Figure 6, where SFC is plotted vs. mixture strength
at typical load conditions for an automotive engine (NASA) and an aircraft
engine (JPL). Operation with gasoline only is represented by the solid curves
while the dashed curves denote gasoline plus the indicated amounts of hydrogen.
In each case the spark advance was maintained at an optimum or near-optimum
setting, typically 30° - 35° BTDC for the aircraft engine and over 40° for the
auto engine. Under these conditions, the minimum SFC buckets occurred with
gasoline only even though the auto engine's lean limit was noticeably extended
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normal stoichiometric or slightly rich condition in the aircraft engine.

ONGOING AND FUTURE PROGRAMS

With this basic work behind us, the current program (Fig. 7) in­
cludes elements designed to achieve a technology base which will enable
general aviation to live with the fuels of the future. As indicated, the
program includes near-term elements which could improve the fuel economy
of present-day type engines, as well as longer-term elements leading to
broad-specification or true multi-fuel capability (together with further
reductions in SFC). While recognizing the inherent multi-fuel capability
of other candidates such as gas turbine or Stirling engines, the program
discussed here is now oriented toward diesel and rotary combustion engines in
addition to advanced piston engines. All of these can benefit immediately
from the results of ongoing automotive diesel and stratified charge research
programs and offer significant benefits without having to wait for "technology
breakthroughs" in one or more areas. We are of course, monitoring ongoing
turbine and automotive Stirling programs for applicable developments.

Advanced Piston Engines

Current production general aviation piston engines reflect a level
at e?HS?d-at the/nd Of W" W‘ Tt ^ems reasonable to

expect that they cou d be improved substantially by incorporating applicable
developments of the last 30 years. In particular, the automotive research
programs that have been mounted within the past decade, would appear to be
a rich source of new technology for general aviation iimi \kPP D
teresting developments are proprietary r \J h 1e ?e m0St ln"
it is to be honed that ! k 2. cannot be discussed at this time,ii ib to oe nopea tnat arrangements beneficial tn • xj .
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In many turbocharged installations, the amount of leaning made
possible by the two items above would be accompanied by excessive CHT's and
detonation. This would negate the potential SFC improvement due to leaning
unless better cooling is provided. Potential improvements are forseen in
several areas.

Exhaust port liners and/or thermal barrier coatings will decrease
the heat load into the cylinder head by as much as 35%. Advanced designed
cooling fins and passages can more effectively dissipate the remainder of the
heat load. The resulting lower CHT's and elimination of hot spots will enable
the engine to run leaner and/or at a higher compression ratio without detonating.
For turbocharged engines, a 5 to 10% reduction in SFC is anticipated from these
improvements. Alternatively, the lower CHT's could enable the engine to burn
lower octane fuel. Figure 8 illustrates a hypothetical cylinder head design
that incorporates the port liners, improved fuel injection and other advance­
ments into a well-integrated package.

More efficient inlets, baffles, fins and exits can reduce the cooling
air pressure drop for a given heat load by a factor of 2 or more. The resulting
decrease in cooling drag is equivalent to a further fuel economy improvement
of up to 5%. This is additive to the above and also applies to those engines
that are already capable of operating lean.

In the longer term, advanced combustion research is essential to
utilize cheaper, more readily available fuels. It should be noted that, based
on current fuel prices, 100 octane avgas is 10 to 15% more expensive per gallon
than diesel or Jet-A fuels. These fuels however, contain about 10% more
BTIJ's per gallon than avgas because of their greater density. Thus a fuel cost
saving potential of 20% or more is readily apparent, even if SFC's are not im­
proved at all. Automotive research results indicate that novel combustion
geometries coupled with vapor-phase fuel injection, may significantly broaden
the fuel tolerance of an otherwise conventional engine.

Diesel Engines

Diesel engines are of interest because of their well-known potential
for low SFC. They can also burn kerosine-type jet fuels with little difficulty.
These types of fuel are generally cheaper than avgas. Since the diesel
is not detonation-limited, it can run at high compression ratios and/or can
be turbocharged to exceptionally high power densities. The problem with diesels
is weight. A normally aspirated diesel suffers an immediate specific power
penalty of about 15% compared to a gasoline engine because only about 85% of
the theoretically-available air per cycle can be burned efficiently. At
typically high diesel compression ratios, the high peak firing pressures result
in major structural weight penalties in addition. Based on these considerations
it was felt that a low compression, turbocharged diesel concept might offer the
best trade-off between weight and performance.
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Rotary Engines
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The rotary or Wankel engine (Figure 12) is of great interest because of
its established advantages of simplicity, light weight, compactness, clean
low-drag installation features, low vibration and reduced cabin noise. Its reputed
disadvantages of high fuel consumption and emissions, have been largely over­
come by continued research, some in this country and some by foreign automotive
companies. For example, according to EPA "city cycle" driving test results,
the 1973 Mazda gave 10.6 mpg while the 1977 version showed nearly a 100%
improvement to 20 mpg. The detailed SFC and raw-emissions data are proprietary
at this time, but it can be stated that the best of the late-model automotive
rotaries are becoming competitive with their piston-powered counterparts.

The price situation for rotaries is uncertain at this time. The
parts are few and simple but require high-grade materials and verv close­
tolerance machining. On the other hand, the rnnront 41! ?nd,ve^y lf t0
hiqh-volume automated producibility Co-produc??nn1y
foreign companies are being considered (Ref 9 and ini J"geni®n^-T^favorable
production-volume basis. Unconfirmed reports (ReS / i"^115^
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design with a compact combustion volume intended to keep the heat in. The
work however is being continued to optimize the combustion chamber geometry
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expect to reach the indicated BSFC level of about 0.42 after another
effort.
Figure 10 illustrates a turbocharged diesel concept in which an aux­

iliary combustor fed by compressor air is used to provide additional power
to the turbine. In this concept the power output is limited only by cooling
and structural consideration. The turbomachinery can be started and run
independently of the diesel cylinders to provide hot compressed air for
starting and low power operation. This concept has been under study and
development for some time by the Hyperbar Diesel Co. in France. The French
results (Ref. 8) indicated that SFC's at least as low as 0.38 can be obtained
at cruise to rated power conditions. At Lewis, we are initiating a research
program on this concept, using a single-cylinder research engine, with which
we hope to further improve this figure. Our diesel test cell (Figure 11) is

beln9 checked out, is scheduled for start up in December 1977 and
should be operating productively by early 1978.
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These potential developments are highly significant, because the same
tooling might also be used to manufacture derivative aircraft engines or
key components thereof at reasonable cost.

For aircraft applications, two distinct versions of the rotary
engine are of interest and they will be separately discussed. A naturally
aspirated, spark ignited version appears to be most attractive for lower-
power applications and whenever turbocharging would not be desirable. Figure
13 illustrates results obtained last year in testing a Curtiss-Wright RC-2-75
engine under a NASA contract (Ref. 11). It’s best SFC of about 0.54 might
be good enough for an automotive application, but is not competitive with even
a current production normally aspirated aircraft engine. On the other hand,
it met the EPA NOx and CO standards, and was only slightly above the HC
standard. It's specific weight of about 1.25 Ibs/hp is most attractive. It
should be noted that the rotary, because of heat losses from its high surface
to volume combustion chamber, is less subject to detonation and has a lower
octane requirement than a piston engine. Also, it is insensitive to lead in
the fuel due to self-cleaning internal surfaces and having no valves to stick.
At a given compression ratio, therefore, the rotary is more fuel-tolerant than
a piston engine. Alternatively, the rotary can run a higher compression
ratio on the same fuel. Returning to Figure 13, single rotor tests at an
increased compression ratio (to 8.5:1) with other minor changes, showed
significantly better SFC's coupled with acceptable HC emissions.

The Polish PZL Franklin engines currently run a 9.5:1 compression
ratio on 100/130 octane avgas, according to the manufacturers' literature.
Based on the above arguments, we would expect that the rotary could run at
least that high. On that rationale, we have projected the 8.5:1 rotary test
points to 9.5:1 and expect to be at the more competitive level shown in about
a year. Based on unconfirmed reports concerning the new Toyota rotary
(Ref. 10) we anticipate that the results shown can be further improved by
employing a comparatively simple, partial charge-stratification scheme. This
may also improve the engine's fuel-tolerance and emissions characteristics.

Attempts to further improve the rotary's SFC by going to diesel operation
have thus far proven discouraging. Considering the effects of heat losses, seal
leakage and manufacturing tolerances, it appears impracticable to obtain a high
enough compression ratio. On the other hand, much the same result can be
obtained via stratified charge operation. As Figure 14 suggests, the principle
is that fuel is injected directly into the combustion chamber via a high
pressure injector, as in a diesel. But instead of depending on compression heat
to ignite the fuel spray, this is accomplished by a separate means such as an
arc or a timed high-enerqy spark. The rotary is uniquely well adaptable to
this approach for two reasons. First, the elongated rotary combustion chamber,
in its natural sweeping motion past fixed injection and ignition points yields
inherent charge-stratification. No power-robbing pre-chamber is needed; in
effect, the combustion volume is moved through a stationary flame front. This
keeps fuel out of the rotor trailinq-edge region where poor combustion is
apparently responsible for part of the rotary's past SFC and HC emissions problems.
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shown are for a naturally aspirated engine with a specific
Our goal for 1985 is to improve these figures to a specific

a SFC under 0.40.
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for optimum performance and efficiency on a fuel of choice such as diesel
or Jet fuel -- it should have "keep flying" capability on gasoline in case of
shortage or unavailability. Operations at a small FBO may be a case in point.
Such advantages have not gone unnoticed by other investigate. s. A perusal of
fundamental and applied research in the recent literature (Refs. 12 through 14)
indicates tha* the technology is now at hand to develop a multifuel stratified
charge rotary whose SFC, as projected in Figure 15, is at least comparable to
that of the best current production aircraft engines. And all the while
it is using a cheap and very available fuel.
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The second example concerns a hypothetical high-performance general
aviation business twin. The Appendix outlines some admittedly crude, success-
oriented and over-simplified calculations to compare a status-quo engine and
an advanced engine in the same airplane. For the one model considered, this
provides a preliminary estimate of the annual fuel-cost savings that might
be expected from advanced propulsion technology.

The numbers representing the baseline airplane and engine are not
specific to any current models but are thought to be representative. The
maximum cruise SFC is installation dependent and varies with the amount of
fuel required to cool the engine; the spread of 0.47 to 0.41 covers most
installations. Fuel prices were established for this exercise by extra­
polating the late 1977 pricing structure to the levels predicted at this Con­
ference for about 1982. On this basis, the annual fuel bill for 600 hours
utilization would range from about $35,000 to $30,000.

For the advanced engine, presumably a lightweight diesel or stratified-
charge rotary, we chose the most optimistic numbers from the context of the
present discussions: SFC = 0.38 Ib/hp-hr; specific weight = 1 Ib/hp; and
a cooling drag reduction equivalent to 4% of the cruise thrust hp. This
results in an annual fuel bill of about $19,600 -- a savings of $12,800
to $15,400 -- if it is assumed that the weight saved in engine and fuel is
added to the payload. In this case we achieve a 36-44% fuel cost savings
coupled with a 55% increase in payload.

Alternatively, if the airplane is simply flown lighter, the engine
may be throttled back to cruise at the same speed; the fuel bill is then
about $17,700 which represents a savings of nearly 50%.

The above results vary linearly with the annual utilization rate of the
airplane, as shown in Figure 16. For the nominal 600 hr. rate, the maximum
savings of about $17,300 probably represents 5 to 7% of the airplane’s base
price. Thus, a premium of 10% of the selling price could be recovered in 1%
to 2 years. Thereafter, within its expected lifetime, the airplane would
probably repay its original base purchase price in fuel savings alone.

The above results assume that the best of the anticipated developments
occur simultaneously and are in that sense optimistic. On the other hand, no
effort has been made here to estimate the possibly significant added benefits
that could be expected from re-sizing and otherwise re-optimizing the airplane
to better match the new engine. This would be especially important for the
rotary engine since it differs in several major respects from current practice
No economic credit was estimated for the better durability and reliability
anticipated of an advanced diesel or rotary engine. As these same factors
also influence safety, the ultimate benefit may be very significant. Con­
sidering these factors, even a 50% savings may be conservative.

As mentioned, extensive studies will be necessary to evaluate the
economic impact of advanced technology on all types, classes and uses of
general aviation. In the end, the more conservative fuel cost savings of
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A sizeable investment will be required, however, to real!ze this
very des rable state of affairs. The Government research programs I described
are not cheap and the industry is conducting additiona work on its own.
When the technology base has been laid, the industry will then have to develop,
certify and tool up for the new designs. How is all this to be paid for.

An extension of the preceding business-twin example suggests that
the eventual benefit to the economy as a whole could be surprisingly large
and of a sufficient order of magnitude to justify a respectable investment.
Assume that an annual production of 100 advanced propulsion airplanes is
established to upgrade a static, 2000 airplane fleet on a 20-year life cycle.
The airplanes, engines and utilization are as described in Appendix A, except
that the more conservative 30% annual fuel cost savings is assumed. Each new
airplane then would "earn" on the order of $10,000 per year. The first year,
100 upgraded airplanes replace 100 retiring status-guo airplanes and collectively
"earn" $1M. The second year, the 200 new airplanes "earn" $2M, and so forth.
By the tenth year, 1000 upgraded airplanes are earning $10M. This when
added to the sum of all prior year savings ($1M + $2M . . . + $9M + $10M)
yields an accumulated total benefit to the economy of $55M, compared to
prolonging the status guo. By the end of the 20-year life cycle, the now-
upgraded fleet has produced a total benefit of $210M to the economy and the
benefit is increasing at the rate of $20M/year. Recall that this is for one
airplane model only, which represents less than 1/10 of the total general
aviation fleet and a modest fraction of the industry's dollar volume. If all
elements of the piston-engine fleet were similarly upgraded, the total benefit
anntr k?”™-J• •$1 Billion order of magnitude. This would
appear to justify a sizeable initial investment.

hp mnre representati ve. But even that30% mentioned before may P™ve be price gf many general aviat-
XpSs X t. o-ers .nd

alike.

CONCLUDING REMARKS

In conclusion, I would like to offer some comments that primarily
reflect my own viewpoint rather than matters of policy or settled opinion
within NASA. Regardless of one's views on the real nature of the "energy
erisis , it does appear that conservation and energy efficiency will be
part of the scene for as far as we can see into the future. What does this
mean to general aviation? My personal views on the subject are expressed on
the last figure. Sooner or ater - perhaps by the early to middle 80's,
some customary grades of fuel may simply become unavailable Or they may
remain available, but at what price? Clearlv it Jn u ] .-ii.,
desirable to take advantage of the broadXcif ^t be economically
the future. As indicated, several wo™ a « » 19h V°1ume U Lh
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I have now indicated the main technological steps along the path
I think we must follow, although only the longer-term aspects were dis­
cussed in this presentation. The ultimate benefits are indicated at the
bottom. Our earlier work shows that economy and emissions are interlocked
to such an extent that the former EPA standards will probably be met anyway,
in the due course of events. Not by 1980, but eventually. Much work
remains to demonstrate that some of the advanced engine's anticipated
advantages, in such areas as durability and reliability, are in fact real.
Extensive studies will be needed to more accurately evaluate the economic
impact of these developments, and it is hoped that all segments of the
industry will contribute to these studies. My own highly preliminary assess­
ment should be taken as indicating an order-of-magnitude potential only. But
the potential appears to be there. If the research programs turn out as
expected, the benefits are large enough to be compelling.
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APPENDIX - SIMPLIFIED ESTIMATE OF ANNUAL FUEL COST SAVINGS
DUE TO ADVANCED ENGINES (ANTICIPATED 1982 FUEL PRICES)

Baseline Airplane: 6-place pressurized business twin, turbocharged
750 lb payload class, 200+ kt. max. cruise 0
20,000 ft and 1/d = 8.5

llti lizati on: 600 hrs/year 0 max. cruise

Baseline Engine: Rating/weight: 333 hp/500 lbs
Max. cruise power/SFC: 250 hp*; 0.47 to (0.41) Ibs/hp-hr
Fuel flow: 235 Ibs/hr (2-engines) (205 0 0.41 SFC)
Annual fuel use: 141000 lbs
Fuel: 100 octane avgas 0 $1.50/gal or 24.8^/lb
Density/heating value: 6.042 Ibs/gal; 18600 BTU/lb
Annual fuel bill: $34968 ($30504 0 0.41 SFC)

Advanced Engine: Rating/weight: 333 hp/333 lbs
Max. cruise power/SFC: 240 hp**; 0.33
Fuel flow: 184.2 Ibs/hr (2-engines)
Annual fuel use: 109440 Ibs/year
Fuel: Diesel 2 0 $1.35/gal or 17.9<+/lb
Density/heating value: 7.544 Ib/gal; 18600 BTU/lb
Annual fuel bill: $19590

Annual Saving: $15378 to $10914 or 36-44%, of which about half is due to
direct SFC improvement, plus reduced cooling drag; and the
remainder is due to lower fuel price/BTU

In Addition: Payload may be increased by over 400 lbs (55%) due to
the lighter engine and the 200 lb. fuel savings recorded
over a typical 4-hour mission.

Alternatively: The airplane may be flown throttled-back since it is
lighter (assuming the 1/d ratio stays constant at about
70 ik '^1S resu^ts ln another fuel savings of about
/Z lbs. over the same 4-hour mission, and brings the
49nc" u°'Xt0 $17667- The savinqs is then
49.5,7. ($12873 and 42% 0 0.41 SFC).

* Includes 25 hp loss due to drag of conventional cooling system
** Includes 15 hp loss due to drag of improved cooling system.
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ENERGY PROGRAMS DIRECTORATE (G. M. AULT)

•RECIPROCATING ENGINES (UPTO j AVIATION

IROTARY ENGINES 800SHP); BRANCH

AERONAUTICS DIRECTORATE (W. L STEWART)

COMMERCIAL TURBOFANS, TURBOPROPS

QCGAT-LARGE G. A. TURBOFANS (1500 lb FN)

GATE - SMALL G. A. TURBINES (150 - 1000 SHP)

GAP - G. A. PROPELLER TECHNOLOGY

GOALS

REDUCED A/C PRICE AND OPERATING COST

REDUCED FUEL USE

LOW NOISE AND EMISSIONS

Figure 1. - LeRC general aviation programs.

FACILITY ENGINE TYPE INTAKE & COOLING DYNAMOMETER.
hp/rpm

SE-17 AIRCRAFT

(4 & 6 CYLI

TEMPERATURE/HUMIDITY

CONTROLLED

300/5000

SE-11 AUTOMOTIVE

(CHEV. V-8 & ROTARY)

AMBIENT INTAKE

WATER-COOLED

250/4500

SE-6 SINGLE-CYLINDER

RESEARCH (DIESEL)

AMBIENT/HEATED INTAKE

WATER-COOLED

125/5000

Figure 2. - General aviation reciprocating engine test facilities.
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NGRAMS DIRECTORATE (G. M. AULT)

LOCATING ENGINES (UPTO I

'ENGINES 800 SHP);

GENERAL
AVIATION
BRANCH

S DIRECTORATE (W. L STEWART) 

3IALTURBOFANS, TURBOPROPS

ARGEG. A. TURBOFANS (15001b FN)

<*IALL G. A, TURBINES (150 - 1000 SHP)

4. PROPELLER TECHNOLOGY

GOALS

“’RICE AND OPERATING COST

ilSE

EMISSIONS

LeRC general aviation programs.

INTAKE & COOLING

TEMPERATURE/HUMIDIEY

CONTROLLED

AMBIENT INTAKE

«Y) WATER-COOLED

AMBIENT/HEATED INTAKE

WATER-COOLED

DYNAMOMETER.
hp/rpm

300/5000

250/4500

125/5000

*tion reciprocating engine test facilities.
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C-77-3619
’w of control room.

LEANED-OUT

100 cycle bar-chart displays. cs" k

(b) EFFECT OF CONTROLLING FUEL/AIR
RATIO TO CONSTANT VALUE AT
80% REL HUM.

Figure 5. - Taxi mode HC emissions.

Figure 6. - Effect of hydrogen enrichment on fuel consumption.
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CONVENTIONAL ENGINES

JOINT NASA/FAA PROGRAM

AVCO-LYCOMING CONTRACT

VARIABLE VALVE TIMING

ULTRASONIC FUEL VAPORIZATION

ADVANCED IGNITION CONCEPTS

TCM CONTRACT

AIR INJECTION

PULSED FUEL INJECTION

IMPROVED COOLING COMB. CHAMBER

CONTRACT

FUEL TOLERANCE TESTS

IN-HOUSE

TEMPERATURE/HUMIDITY CORRELATION

FOR EMISSIONS

LEAN OPERATION (HEI. FUEL INJECTION!

ADVANCED ENGINE CONCEPTS

CONTRACT

LIGHTWEIGHT DIESEL CYLINDER (U. MICHI

LIGHTWEIGHT DIESEL DESIGN STUDY (TGPD)

ROTARY ENGINE (CUTRISS-WRIGHT)

STRATIFIED CHARGE ROTARY DESIGN STUDY

ADVANCED SPARK IGNITION ENGINE STUDIES

IN-HOUSE

LIGHTWEIGHT DIESEL OR STRATIFIED-CHARGE

ENGINE WITH SEMI-INDEPENDENT TURBOCHARGER

ROTARY ENGINE WITH SIMPLIFIED CHARGE

STRATIFICATION SCHEMES

COOLING FINS STUDY FOR ADVANCED CYL

HEADS

CONTINUING OTTO PROGRAM DEVELOPMENT

CONTINUING DEVELOPMENT OF INSTRUMENTATION

AND CELLS

Figure 7. - Current programs.

FUEL INJECTOR (PART
OF IMPROVED FUEL
INJECTION SYSTEM)-7

r AIR SUPPLY FROM
PUMP FOR AFTER
TREATMENT OF
EMISSIONS

V-IMPROVED CYLINDER
\ HEAD COOLING FIN

\ DESIGN

EXHAUST PORT
LINERS

OR

EXHAUST PORT
COATINGS

combustionxxZeXHAUSTVALVE
CHAMBER VARIABLE TIMING IGNITION SYSTEM

F0R L£AN F/A MIXTURE OPERATION

INTAKE VALVE-/

Figures. - Advanced
Cyllnder head concept integration.
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ADVANCED ENGINE CONCEPTS

,M CONTRACT

.CT LIGHTWEIGHT DIESEL CYLINDER (U. MICH)

-tNG LIGHTWEIGHT DIESEL DESIGN STUDY (TGPD)

^PORIZATION ROTARY ENGINE (CUTRISS-WRIGHT)

CONCEPTS STRATIFIED CHARGE ROTARY DESIGN STUDY

ADVANCED SPARK IGNITION ENGINE STUDIES

IN-HOUSE

fl LIGHTWEIGHT DIESEL OR STRATIFIED-CHARGE

4MB. CHAMBER ENGINE WITH SEMI-INDEPENDENT TURBOCHARGER

ROTARY ENGINE WITH SIMPLIFIED CHARGE

STRATIFICATION SCHEMES

COOLING FINS STUDY FOR ADVANCED CYL

•’ CORR ELATION HEADS

CONTINUING OTTO PROGRAM DEVELOPMENT

♦JEl INJECTION! CONTINUING DEVELOPMENT OF INSTRUMENTATION

AND CELLS

Figure 7. - Current programs.

IMPROVED CYLINDER
\ HEAD COOLING FIN

* DESIGN

EXHAUST PORT
LINERS

OR

EXHAUST PORT
COATINGS

*»u'snw\4EXHAUSTVALVE
•AMBER v VARIABLE TIMING IGNITION SYSTEM

FOR LEAN F/A MIXTURE OPERATION

f AIR SUPPLY FROM
PUMP FOR AFTER
TREATMENT OF
EMISSIONS

**Cy,inder head incept Integration.
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10:1 C.

EXPECTED

O SPARK
IGNITION

POTENTIAL

? | I ^1______ 1
a-----------------» 4 50 60

HIGH FUEL CONSUMPTION DUE TO:
• POOR FUEL ATOMIZATION

AND DISTRIBUTION
. LOW TURBULENCE
• OVERCOOLING

ONE CYLINDER BHP

Figure 9. - Initial test results on cylinder low compression ratio aircraft diesel

at the University of Michigan.

Figure 10. - Lightweight diesel or stratified-charge engine

(semi-independent turbocharger).
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Figure 11(a). - View of diesel engine test cell.

Figure 11(b). - View of dynamometer and AVL research diesel.
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Figure li - Stratified charge rotary multi-fuel engine ^conventions
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ROTARY COMBUSTION
CHAMBER

Figure 12. - Stratified charge rotary multi-fuel engine (conventional turbocharger).

BRAKE MEAN EFFECTIVE PRESSURE, psi

Figure 13. - Rotary engine fuel consumption trends.
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INHERENT CHARACTERISTICS

• MULTIFUEL CAPABILITY
• LEAN OPERATION
• NO OCTANE/CETANE REQUIREMENT

Figure 14. - Stratified-charge principle.
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RAVI MATERIALS.
ALTERNATE FUELS OR MULTIFULE ENGINES VIA:
- IMPROVED COOLING
-IMPROVED FUEL AND IGNITION SYSTEMS
■NOVELCOMBUSTION CHAMBERS
-STRATIFIED-CHARGE OR DIESEL OPERATION

•USE LESS OF THOSE FUELS
REDUCED ENGINE SFC VIA:

-LEAN OPERATION

-novelengine cycles
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ignition
SOURCE

•IERENT CHARACTERISTICS

^ULTIFUEL CAPABILITY
•CAN OPERATION
^^ANE/CETANE REQUIREMENT

’Stratlfied-charge principle.

Figure 16. - Annual fuel cost savings due to advanced technology engine in 6-place business
twin.

• POSSIBLE CONSTRAINTS ON FUEL AVAILABILITY/COST. USE FUELS THAT REFLECT
AN "ENERGY EFFICIENT" PRODUCT SPLIT FROM AVAILABLE CRUDES AND OTHER
RAW MATERIALS.

ALTERNATE FUELS OR MULTIFULE ENGINES VIA;
- IMPROVED COOLING
- IMPROVED FUEL AND IGNITION SYSTEMS
- NOVEL COMBUSTION CHAMBERS
- STRATIFIED-CHARGE OR DIESEL OPERATION

•USE LESS OF THOSE FUELS
REDUCED ENGINE SFC VIA:
- LEAN OPERATION
-NOVEL ENGINE CYCLES

REDUCED COOLING & INSTALLATION DRAG VIA:
- LOWER HEAT LOAD
- IMPROVED AERO. INTEGRATION
- COMPACT DESIGNS

LIGHTER-WEIGHT ENGINES
-INCREASED SPECIFIC POWER
- NOVEL STRUCTURAL CONCEPTS
-ADVANCED MATERIALS

•AND. EXPECT BENEFITS IN TERMS OF
-SAFETY - ENVIRONMENTAL ACCEPTABILITY
-RELIABILITY -DURABILITY
-COST -MAINTAINABILITY

Figure 17. - What does conservation mean to general aviation?
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DEVELOPMENT STATUS OF ROTARY ENGINE AT TOYO KOGYO

Kenichi Yamamoto
Toyo Kogyo Company, Ltd.

Current Production Enging

(Table 1)

Currently, as shown in Table 1, we are producing two

types of rotary engines; the 12 A and 13 B. Both use a

thermal reactor as the primary part of the exhaust emission

control system.

(Fig. 1)

Fig. 1‘ shows a 12 A engine construction.

Now Technologies Applied to Main Component

(Fig. 2)

A two-piece type metallic apex seal is shown in Fig. 2.

Originally, a special carbon material had been used for the

apex seal, but now it has been replaced by acicular iron

based metal.

The top portion of this metallic seal is crystallized

in the form of carbides, a so-called "chilled layer" by

the electron beam process. This treatment contributes to

improving the anti-wear characteristics and has made it
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possible to adopt a two-piece type apex seal with a reduced

width, which results in the improvement in gas sealing.

(Fig. 3)
The rotor housing is made by aluminum pressure die­

casting with a carbon steel-sprayed inner core as shown

in the upper sketch in Fig. 3. We call it TCP (Transplant

Coating Process). This method contributes to a significant

improvement in adhesiveness of the chromium plating as

compared with that of direct chromium plating on to the

aluminum alloy, resulting in easier quality control.

From 1974 model, a new process, SIP(Sheet-metal Insert

Process), has been adopted for increasing the strength

of the trochoidal surface and obtaining higher productivity.

In this process, the aluminum alloy rotor housing is

die-cast to a thin sheet-metal with a jagged surface and the

chrome plating is applied onto the flat surface of the sheet

metal as shown in the lower sketch in Fig. 3.

This process has enabled to achieve better bonding of

the aluminum and the sheet metal, as well as better adhesion

of the chrome plating.

(Fig. 4)

Fig. 4 shows the sheet-metal formed in a trochoidal

shape. The outer side of it is the jagged surface.

(Fig. 5)

has

oil

As shown in Fig.

been applied onto
a pin-point porous chrome plating

the trochoidal surface to maintain the

<u. M to characti(ri-t.c
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Development on the Exhaust Emission and Fuel Economy of

the Rotary Engine at Toyo Kogyo
Now I would like to explain our "Development on the

Exhaust Emission and Fuel Economy of the Rotary Engine

at Toyo Kogyo"
The discussion will cover two main areas; "Improvements

of Current Production Engine", and "Development in Advance

Programs".
Toyo Kogyo began manufacturing rotary engines in 1967

and we have produced some 9 30/000 rotaries to date.

As you may already knowz we made substantial improvements

in fuel economy on our 19 76 rotary engine models.

These improvements were achieved through various modifications

of the engine and the thermal reactor system. Details of

this are discussed in the paper, and I will now touch briefly

on the main items.

(Fig. 8)

Fig. 8 shows a friction loss analysis on the

1975 model 13 B engine. It is clear that the gas

sealing is one of the major factors of the total friction

loss in the Wankel type rotary engine. In order to

reduce gas leakage, we incorporated various improvements

in the gas seal elements.

(Fig. 9)

We adopted a two-piece metal apex seal
from the

1974 models, but on 1976

substantially by lowering
models we reduced gas

the end height ZJM of
leakage

the
apex seal as shown in Fig. 9. w

also adopted a
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ece metal apex seal from the

6 m°^els we reduced gas leak3?

^9 the end height 4 M of the

9* 9. ajso adopted a

10 - 30.-" crowning to improve the conformability of the

apex seal to the trochoidal surface.

We also increased the elasticity of the corner

seal from the 1976 models to minimize the clearance

between the corner seal and the seal bore.

(Fig. 10)

The effect of improved gas sealing is shown in

Fig. 10. A 2 - 9% Brake Mean Effective Pressure

improvement was achieved in the low and medium engine

speed ranges, and in Brake Specific Fuel Consumption, a

3-8% improvement was achieved at 1500 rpm.

(Fig. 11)

Next, we have made an extensive study on the

combustion chamber recess in order to increase combustion

speed and we have adopted the Leading Deep Recess (LDR)

type combustion chamber as shown in Fig. 11 in the 12 A

engine from 1976 models. This type of combustion chamber

shifts its recess to the leading side of the rotor.

(Fig. 12)
As a result, a 3 - 4% improvement in fuel economy

was attained by the leading spark plug alone as shown

in Fig. 12. However, we had to suspend the adoption

of the Leading Deep Recess combustion chamber in the 13

B engine -which has a larger displacement - because it

aggravated the tendency to misfire.

As you know, reduction in the final gear ratio is

also effective in improving fuel economy but, to do
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this t improvements
in low-speed torque are required.

(Fig. 13)
This figure shows the effect of inlet close timing

on Brake Mean Effective Pressure. On the 1976 models,

inlet close timing was changed to 40 degrees from 50

degrees After Bottom Dead Center.
Based on this increase in low-speed torque, we

reduced the final gear ratio from 3.900 : 1 to 3.636 :

1 on the 13 B engine and to 3.727 : 1 on the 12 A

engine. In addition to this, on the 1976 model, we

adopted the 5 speed manual transmission with an overdrive

gear ratio of 0.862 : 1.

Simultaneously with these modifications, we also

improved the thermal reactor system.

(Fig. 14)

Modification of the exhaust port insert is shown
in Fig. 14.

After testing many types of inserts, we chose the

one shown in the right sketch. Its decreased heat loss

and increased port insert capacity from 33 cc to 55 cc

enhanced pre-reaction in the port insert area.

(Fig. 15)

Fig. 15 shows the effect of secondary air
temperature on thermal reaction limit at a certain
engine load. As the secondary air

thermal reaction becomes possible
ratio.

temperature goes up,

at a leaner air-fuel
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This is the heat exchanger for pre-heating secondary

air which was adopted from the 1976 models. The heat

exchanger is integrated with the exhaust pipe behind

the thermal reactor, and raises secondary air temperature

approximately 200 degrees centigrade, for example, in

the light load range at 1500 rpm.

This pre-heating of secondary air and the modified

exhaust port insert allowed the adoption of a leaner

air-fuel ratio and more advanced ignition timing.

(Fig. 17)

This figure is the comparison of Brake Specific

Fuel Consumption between 1975 and 1976 models. The

dotted line is for the 1975 model and the solid line is

for the 1976 model, both conforming with the required

emission standards without an EGR system.

(Table 2)

This table shows the emission and fuel economy

data of the 1975 and 1976 models as published by the

EPA. In the combined fuel economy, the 1976 model 12 A

engine in the 2750 lb inertia weight class made an

improvement of approximately 43 percent over the 1975

model.

There was an approximate 38 percent improvement in

the 13 B engine in the 3000 lb inertia weight class.

All these improvements in the engine and thermal

reactor system have been applied to the current engines.
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(Table 3)
NOW, i will move on to the second heading, "Development

in Advance programs". The basic target in our advance

programs is to pursue better fuel economy, higher-

performance and better drivability, while of course

meeting the stringent exhaust emission standards. Of

these, needless to say, fuel economy improvement is the

most important. Our basic thinking on the subject of

fuel economy improvement is discussed in the paper, and

I will give you an outline of the main items.

First, I would like to explain our experiments on

spark plugs and the combustion chamber recess.

(Fig. 18)

These are comparison test results of the dual

spark plugs (trailing and leading), and the single

spark plug (leading spark plug alone) with regard to

fuel economy, exhaust emission and exhaust gas temperatures
2at 1500 rpm and 3 kg/cm Brake Mean Effective Pressure.

The engine is a 13 B with MDR ~ Medium Deep Recess —
combustion chamber.

A leading spark plug alone appers to be more
desirable than dual spark plugs for the after-treatment

device which requires a higher exhaust gas temperature

and less base exhaust emissions. However, the dual

park plugs are better in terms of fuel economy than

the single spark plug.
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(Fig. 19)

This is a comparison of the fuel flow requirements

obtained by the leading spark plug alone and the dual

spark plugs while thermal reaction is taking place in

the reactor. This shows, when the thermal reactor is

used, the single spark plug gives better fuel economy

than the dual spark plugs.

As a next step, we carried out a series of tests

on the combustion chamber with the leading spark plug

alone.

(Fig. 20)

For example, this is the comparison of combustion

speed at idling. The dotted line is for the Medium

Deep Recess design, and the solid line is for the

Leading Deep Recess, both with the leading spark plug

alone.

The axis of abscissa is the eccentric shaft angle

and the axis of ordinate is the mass burning rate, or

combustion speed. The combustion speed of the LDR is

faster than that of the MDR.

(Fig. 21)

The effect of the combustion chamber on Brake

Specific Fuel Consumption is shown in Fig. 21. In

the case of the leading spark plug alone, the LDR gives

less fuel consumption than the MDR, as shown in the

lower figure. The upper figure is the comparison in

Brake Mean Effective Pressure at Wide Open Throttle

when both leading and trailing spark plugs are ignited.
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Here again, the LPR shows slightly better results than

the MDR.

(Fig. 22*)
Next, we made various studies on the influence of

the compression ratio in the LDR type combustion chamber.

This is the relationship between the compression ratio

and the octane number requirement. The dotted line is

for the dual spark plugs and the solid line is for the

leading spark plug alone, both with the LDR type combustion

chamber.
The octane number requirement for a single spark

plug is relatively low compared with that of the dual

spark plugs. For example, the octane number requirement

for the leading spark plug alone at a compression ratio

of 10.0 : 1 is nearly equivalent to that for the dual

spark plugs at a compression ratio of 9.2 : 1.

(Fig. 23)

Fig. 23 shows the effect of the compression

ratio. It is natural that Brake Specific Fuel Consumption

improves as the compression ratio increases, but it is

rather interesting to know that Brake Mean Effective

Pressure at a compression ratio of 10.0 : 1 with the
leading spark plug alone is better than that at a

compression ratio of 9.2 : 1 with dual spark plugs.
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This is a comparison of fuel economy, exhaust emissions

and exhaust gas temperature between the LDR with a compres­

sion ratio of 10.0 : 1 and the leading spark plug alone,

and the MDR with a compression ratio of 9.2 : 1 and the
dual spark plugs.

From the foregoing comparison, it can be said that

the LDR with a compression ratio of 10.0 : 1 and the leading
spark plug alone is better.

(Fig. 25)

Now I will continue with "Modifications to the Gas

Seals". Fig. 25 shows a trial for improvement in the gas

sealing elements in our advance program. We changed the

position where the apex seal is split, filled the corner

seal hole with a heat-resisting elastic material and made

the side seal spring pitch variable.

These modifications arc aimed at reducing gas leakage

from the apex seal end and from the lower portion of the

apex seal inside the corner seal hole, and also at decreasing

the friction of the side seal.

(Fig. 26)
This is the effect of these modifications applied to

the advance engines. For example, we obtained about a 5%

increase in low speed torque and about a 4 - 5% improvement

in fuel economy at 1500 rpm.
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Increasing the thermal efficiency

improvements in the combustion chiimber

resulted in a decrease in the throttle

through the

and gas seals

valve opening

during low speed light load conditions, and the misfiring

characteristics became worse because of an increase in

exhaust gas dilution.
In our development program for improvements in fuel

economy, one of the major objectives was to develop a

highly misfiring-resistant engine. The semi-surface

discharge spark plug for improvement in ignition performance

is one of the measures we developed.

(Fig. 27)

This semi-surface discharge spark plug, which we call

the SSD spark plug, is a combination of a suilace gap and

air gap, and this SSD spark plug is activated by the High

Energy Ignition system.

(Fig. 28)

Fig. 28 shows a remarkable improvement in misfiring

characteristics at idling. The dotted line is for the

engine with the aforementioned engine modifications and

the conventional ignition system, and the misfiring is

not on an acceptable level. The solid line is for the
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When EGR becomes necessary in the future to

reduce NOx, a powerful ignition system like this will

definitely be one of the prerequisites.

We have incorporated all the modifications mentioned

so far into our advance engine which we call the P-3

engine.

(Fig. 29)
This is a comparison of fuel economy between the

P-3 engine and the current production engines.

A 6 - 10% improvement in Brake Specific Fuel

Consumption at 1500 rpm was achieved in the P-3 engine

over the current production engine.

(Fig. 30)
A further rotary advancement is our new intake

system which we call CISC, for Compound Inductions Step

Control.
The CISC is a combination of a peripheral port and

side ports and is aimed at supplying the air-fuel mixture

toward the center of the width of the combustion chamber,

utilizing the rotary engine's inherent characteristic

of the mixture flowing in one direction.
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(Fig.

The slit shape peripheral port is fitted with a

reed valve to minimize the side-effects of overlapping,

and the mixture from this port speeds up the total air­

fuel mixture flow. As a result, the fuel is atomized

more effectively and the distribution of the mixture

in the combustion chamber becomes more uniform. In the

CISC system, only the peripheral port functions during

light loads; the dual side ports additionally function

for heavy loads. The peripheral port shares about

26% of the load.

(Fig. 31)

This figure shows an effect of the CISC system on

peak pressure fluctuation rate when the peripheral port

functioned alone. The CISC was superior in combustion

stability - particularly in the leaner air-fuel mixture

32) zone and as shown in Fig. 32, the fuel economy improved

by 4 - 6% at a low speed and a light load.

Additionally, we have developed an engine with
full-direct fuel injection.
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ejection.

(Fig. 33)

This is our Rotating Stratified combustion engine,
which we call ROSCO.

In the ROSCO engine, a fuel injection nozzle is

located in the cold zone of the trochoidal surface

where the thermal load is low. Injected fuel is well

atomized by the air flowing in at a high speed from the

peripheral port, which also has a reed valve like the

CISC. Then, the atomized fuel is stratified in the

combustion chamber on the leading side of the rotor.

Although the mixture moves to some extent toward the

trailing side with the rotation of the rotor, more

desirable distribution of the mixture around the leading

spark plug is obtained than in the case of the conventional

carburetor system.

(Fig. 34)

As you see from this figure of the peak pressure

fluctuation, the ROSCO offers much more stable combustion,

particularly in the lean mixture range, compared with

the carbureted engine.

(Fig. 35)

This is the effect of the EGR ratio on the peak

pressure fluctuation in caburetor and ROSCO systems, which

represents combustion stability. Even at the higher EGR

ratio, drivability was not sacrificed in the ROSCO system

as much as in the carburetor system, and this indicates

the ROSCO has a higher potential for the reduction of

NOx emissions.
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(Fig. 36)
In order to achieve not only improved fuel economy

hut also higher performance we have been developing

a manifold injection by EFI (Electronic Fuel Injection).

One nozzle type and dual nozzle type are shown in Fig. 36.

The advantage of this system is the capability of

maintaining a constant air-fuel ratio and the elimination

of a narrow passage like a carburetor venturi.

(Table 4)
I have mentioned our approaches to the advance engine.

One of the most important considerations is the use of

leaner air-fuel mixtures for better fuel economy. However,

beyond a certain point of leanness we cannot maintain

efficient thermal reaction in the reactor. Therefore,

a catalytic converter will become necessary for our

advance engine in the future.

It was thought that application of a catalytic

converter to the rotary engine would in practice be very
difficult because the high HC emission level of the engine

would affect the durability of the catalytic converter.

However, the recent developmental progress of both the

rotary engine and catalytic converter has changed the
situation.

First of all, the ba^ ilevel of our advance engine,
which had been a 10 g/mile in the FTP mode has been
reduced to a 7 g/mile before

supplying the secondary air.
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^1^0Tt developmental progress of both
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Although this reduced level has been increased to

about a 8 g/mile with an EGR for a 1.0 g/mile NCx, such
figures will be reduced by further engine modifications

such as a cooling control of the engine.

In addition, optimization of the catalytic converter

system, including control of the exhaust gas temperature

and air-fuel ratio, has become promising with the development

of durable catalysts.

With these developments, we believe that the adoption

of a catalytic converter to the rotary engine will become

possible.

(Table 5)

This table is one of our test results on exhaust

emissions and fuel economy of the P-3 engine combined with

the catalytic converter, although this P-3 engine does

not incorporate all of the engine optimization programs

we have in mind. As you can see from this table,

25 miles per gallon combined fuel economy has been obtained,

which of course surpasses the target set by the EPA for

the 1981 model year while meeting the 1981 Federal Emissions

Standards. In this P-3 engine, the fuel flow at idling

is remarkably reduced to 0.9 - 1.1 liters/hour, while

the current production engine requires 1.5 - 1.7 liters/hour.

ce e"91"0'-he base HC level of our advan

g/mile in the FTP mode, ba
i • converted »before the catalytic c

air.

And, the average air-fuel ratio used for this engine was

16 - 17 : 1.
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(Fig. 37)
Also we tested the road load fuel economy on the

advance engine with the catalyst system. The test result

has shown that the fuel economy improvement by the

advance program is more noticeable in the lower engine

speed ranges. We will be able to obtain nearly 25 - 30%

improvement at 30 km/h over the current production engines.

(Fig. 38)
It is too early to draw conclusions about the

durability of the catalytic converter in the rotary engine,

but, according to our on-going test results, we believe

there is a potential to meet the 50,000 mile durability

requirement. As shown in this figure, our advanced rotary

engine with the catalytic converter will be expected to

meet the HC emission standard on the FTP test mode even

after 50,000 miles, based on the estimated deterioration

factor of about 1.5.

Among the many methods and approaches to improve rotary
engine fuel economy while meeting the more stringent

emission standards, we believe the most realistic approach

at present is to combine a catalyst with an engine which is
highly EGR-resistant in a lean air-fuel ratio.

With respect to the 0.4 grams per mile NOx requirement,

we are not yet in a position to discuss the prospect of

satisfactory attainment.
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For the target fuel economy of 27.5 miles per gallon

for the 1985 model year, further engine improvements

and more reduction in the final gear ratio will be

required.

Finally, as mentioned, the progress obtained in

our advance development both on the engine and the

exhaust emission control system has indicated possibilities

of further improvements in fuel economy of our rotary

engine in the future.
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Other Applications
We have also been studying possible applications of

the current production rotary engines without major

modifications to other areas than automobiles. The most

promising area is a boat engine.

(Fig. 39)
Fig. 39 shows one example of the prototype engine for

boats.

(Fig. 40)

As a measure to increase power of the boat engine,

tune-up techniques accomplished through motor sports

experience will be a big help.

Fig. 4 0 shows one of the examples. The housing on

the right is the standard one with a side intake port and

the one on the left is the housing with a bridge type side

port being added.

(Fig. 41)

Fig. 41 shows the performance of tne marinized 13 B
engine. An approximately 50 PS increase will be gained

over the current production engine.
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other

a boat engine.

j been studying possibl

jetion
° applications 0{

rotary engines without major

areas than automobiles. The most

one example of the prototype cn •
P engine fOt

Rotary Engine in Motor Sports
(Fig. 42)

In Japan, the enthusiast’s interest in motor sports
has shifted from the touring class races to the ones for

the 2-seater class which belongs to FIA group 6.

Fig. 42 shows the rotary March powered by this 13 B

racing engine made its debut, September 1976 and triumphed

over the previously unrivaled BMW.

□ increase power of

accomplished through
the boat engine,

motor sports
big help.

no of the examples. The housing on

idard one with a side intake port and

•s tlie housing with a bridge type side

'"rd Hperformance of tnc marine

ely 50 PS increase will he 9U

-tion engine.

(Fig. 43)

The 13 B racing engine developed for the 2-seater

racing machine is basically the same as the 12 A racing

engine except it has a newly adopted dry sump as shown in

Fig. 43 to lower the center of gravity. The metallic apex

seals are installed on this 13 B racing engine.

(Fig. 44)

As shown Fig. 44, the rotor housing with the peripheral

intake port used for the racing engine is shown on the right

side in comparison with the one on the left side with the

side intake port for the production engine. The peripheral

type intake port results in an outstanding volumetric

efficiency at high speeds.

(Fig. 45)
It seems necessary to incorporate the special oil supply

system as shown in Fig. 45 to improve lubricating performance

at high eng’.'..- speeds wnen adopting the metallic apex seals.
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(Fig. 46)
We have been developing the rotary engine to make it

more powerful by utilizing fuel injection, among other

things.
Fig. 4 6 shows the testing of the Lucas type fuel

injection system being carried out in our laboratory.
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Table 1

ENGINE SPECIFICATIONS

Table 2

ENGINE 12A 13B

GENERATING RADIUS (MM) 105 105

ECCENTRICITY (MM) 15 15

HOUSING WIDTH (MM) 70 80

SINGLE CHAMBER DISPLACEMENT
X NUMBER OF ROTORS (CC) 573X2 654X2

MAX. POWER SAE gross (HP/RPM) 120/7000 135/6500

MAX. TORQUE SAE gross (LB-FT/RPM) 110/4000 128/4000

FUEL ECONOMY AND EXHAUST EMISSIONS OF
75 AND 76 MODELS (ERA TEST RESULTS)

'75 MODEL ’76 MODEL

ENGINE 12A 13B 12A 13B

TRANSMISSION (MANUAL) 4-SPEED 4-SPEED 5-SPEED 5-SPEED

VEHICLE RX-3 RX-4 RX-3 RX-4 &
COSMO

INERTIA WEIGHT (LB) 2750 3000 2750 3000

FUEL ECONOMY
(MPG)

CITY 13.8 13.4 19.3 18.4

HWY 20.0 20.5 29.6 28.8

COMB. 16.0 15.9 22.9 22.0

EXHAUST EMISSIONS
(G/MILE)

HC 0.42 0.40 0.95 0.81

CO 3.92 5.39 7.44 4.98

NOx 1.16 1.09 1.60 1.68
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DEVELOPMENT IN ADVANCE PROGRAMS

□ SPARK PLUGS

□ COMBUSTION CHAMBER

□ GAS SEALS

o AIR-FUEL SUPPLY SYSTEM

Table 4

DEVELOPMENT OF CATALYTIC CONVERTER

” OPTIMIZATION OF ENGINE AND ITS CONTROL

a REDUCTION OF BASE HC

b OPTIMIZATION OF CATALYTIC CONVERTER SYSTEM

b DEVELOPMENT OF CATALYST

12A ENGINE 35x2 CID
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Table 3

IN ADVANCE

GS

N CHAMBER

UPPLY SYSTEM

Table 4

CATALYTIC CONVERTER

ENGINE and its control

SE HC

CATALYTIC converter sVSTt

CATALYST

prog^
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Table 5

EXHAUST EMISSIONS AND FUEL ECONOMY OF
ADVANCE ENGINE WITH CATALYTIC CONVERTER

ENGINE; 12A(P-3). WITH EGR
CATALYST:OXIDATION CATALYST(PELLET TYPE)
TRANSMISSION 5-PEED MANUAL TRANSMISSION
INERTIA WEIGHT 2750 LB

EXHAUST EMISSIONS

FTP
(G/MILE)

10 MODE
(G/KM)

11 MODE
(G/TEST)

HC 0.13-0.15 0.03-0 04 4.0-6.0

CO 05-12 0-2-03 10.0-15.0

NOx 0.80-0.93 I 0 19-0.22 2 7-4.0

FUEL ECONOMYrucL •

FTP
(MPG)

10 MODE
(KM/L)

11 MODE
(KM/L)

CITY 22.0-23.0

8.7-9.0 9.3-9.5
HWY 29.0-30.0

COMB. 24.7-25.7

12A ENGINE 35x2 cid

Figure 1
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two-pecetype
METALLIC CHLled layer

Figure 2

l-BASE metal

ROTOR HOUSING

Figure 3

62

PIN-POINT POROUS
CHROME PLATED ROTOR HOU



lECE TYPE
IC APEX SEAL

Figure 2

housing

iiure 3

SHEET-METAL

Figure 4

PIN-POINT POROUS
CHROME PLATED ROTOR HOUSING

Figure 5
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SPECIALLY SURFACE
TREATED SIDE HOUSING

Figure 6

SPARK PLUG

’75 MODEL 76 MODEL

2-GROUND
GAP : 0.65

electrodes
MM 3-GROUND ELECTRODES

GAP 1.05 MM

Figure?
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1000 2000
3000 400Q

engine SPEED (RPM)
5000

Figure 8



tal

Figure 8

ODES

MODIFICATION OF GAS SEAL ELEMENTS

Figure 9
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MODIFICATION OF COMBUSTION RECESS

MDR
LDR

AND SPARK PLUG LOCATION

Figure 11

Figure 12



JFECT OF MODIFIED
1M ELEMENTS

/

ENGINE :13B '75 MODEL
T TRAILING + LEADING SPARK PLUGS

BMEP (KG/CM2)

2000 3000 4000 5000 6000
ENGINE SPEED (RPM)

Figure 10

II OF COMBUSTION RECESS
ARK PLUG LOCATION

LDR

Figure 11
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EFFECT OF COMBUSTION RECESS ON BSFC

EFFECT OF INLET CLOSING TIMING ON BMEP

Figure 13
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modification of exhaust port insert

’75 MODEL
(TYPE A)

’76 MODEL
(TYPE B)

AIR NOZZLE

INSERT VOLUME : 33 cc

AIR NOZZLE

INSERT VOLUME: 55 cc

ENGINE:13B 1500 RPM BMEP:1 KG/CM2

Figure 14

EFFECT OF SECONDARY AIR TEMPERATURE
ON THERMAL REACTION LIMIT

Figure 15

68

WAMN OF BSFC BETWEEN 75

r



< OF EXHAUST PORT INSERT

cc

’76 MODEL
(TYPE B)

500 RPM BMEP:1 KG/CM2

Figure 14
Figure 16

®RYAIRTEIVIPERATURE
VIAL REACTION LIMIT

igure 15

COMPARISON OF BSFC BETWEEN 75 AND 76 MODELS
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EXHAUST EMISSION AND EXHAUST GAS TEMPERATURE
------------ -------------------------------------------------------------------------- I" I COMB RECESS MDR F ' 1 COMB RECESS LOR

L

CD

CD

550

LU
cc

COMP RATIO: 10.0
SPARK PLUG:L

1500 RPM
BMEP. 3KG/CM’

ENGINE : 13B
A/F 16
SPARK ADVANCE : MBT

UJ 600

□
 COMP. RATIO 9 2

spark plug;t+

FFFFCT OF COMBUSTION-RECESS
AND SPARK PLUG NUMBEjLQN-BSFC

650

CC

Figure 18

EFFECT OF SPARK PLUG NUMBER ON THERMAL REACTION

Figure 19
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EFFECT OF COMBUSTION
RECESS Oil BMEP AND BSFC



'T nF COMBUSTION RECFS^

Figure 18

die NUMBER ON THERMAL REAM

■XJRPM ENGINE 13B *76 MODEL
•€P:3KG/CM’ comb, recess mdr

THERMAL REACTION ZONE
:<CO. HC 01 0/MIN

6 58 6.0 6.2 6.4 6.6

FUEL flow (L/H)

figure 19
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EFFECT OF COMBUSTION RECESS ON COMBUSTION SPEED

Figure 20

EFFECT OF COMBUSTION
RFCESS ON BNIEP AND BSFC

ENGINE SPEED (RPM)

Figure 21
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fffect of spark plug numberAOM

Figure 22

EFFECT OF COMPRESSION
RATIO ON BMEP AND BSFC

ENGINE SPEED (RPM)

Figure 23
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COMPRESSION RATIO

Figure 22

10FCOMPRESSION
ISE® BSFC

R': 9.2 T-f-L SPARK PLUGS'^

3000 4000 5000 6000
ENGINE SPEED (RPM)

ENGINE : 13B
COMB. RECESS : LDR

engine : 13B
COMB. RECESS LDR
L SPARK PLUG ALONE

FWe 23

72

EFFECT OF SPARK PLUG NUMBER ON BSFC
EXHAUST EMISSION AND EXHAUST GAS TEMPERATURE

SPARK ADVANCE MBT

1500 RPM ENGINE. 13B
BMEP 3KG/CM* A/F 16

Figure 24

MODIFICATION OF GAS SEAL ELEMENTS

Figure 25
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) BMEP (KG/CM2)
fffect of modified
GAS SEAL ELEMENTS
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ENGINE SPEED (RPM)

Figure 26

NEWLY DEVELOPED SPARK PLUG

SEMI-SURFACE
DISCHARGE
SPARK PLUG

Figure 27
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•ECT OF MODIFIED
3 SEAL ELEMENTS

TOO 3UUU 4UUU OUUU buuu

ENGINE SPEED (RPM)

Figure 26

OPED SPARK PLUG

SEMI-SURFACE
DISCHARGE
SPARK PLUG

Ogure 27
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EFFECT OF H.E.I, SYSTEM AND
S.S.D. SPARK PLUG ON MISFIRE

Figure 28

COMPARISON OF BMEP
AND BSFC BETWEEN PRODUCTION

AND ADVANCE ENGINE (P-3)

Figure 29
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EFFECT OF CISC ON COMBUSTION STABILITY

Figure 31
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Figure 30

OF CISC ON COMBUSTION STABILITY

Figure 31

housing
/-Rotor

ENGINE. 13D
COMB RECESSLOR. C R. 10 0
10 SYSTEM CONVENTIONAL

CARBURETOR
/-REED VALVE

PERIPHERAL PORT

spark plug

A/F RATIO

76

EFFECT OF CISC ON BSFC

MECHANICAL INJECTION PUMP

INJECTION NOZZLE

SIDE PORT

HOUSING
ROTOR

REED VALVE
PERIPHERAL PORT

SPARK PLUG

Figure 32

Figure 33
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PFFFCT of rosco on combustion stability

Figure 34

EFFECT OF ROSCO ON COMBUSTION STABILITY

Figure 35
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ROSCO

A/F RATIO

>GINE:13B
•MB. RECESS:LDR.C.R. Q.2
SYSTEM-CONVENTIONAL

L SPARK PLUG ALONE
• SEAL:7« MOOEL TYPE

2000 RPM
BMEP-.3KG/CM’

CARBURETOR

Figure 34

ON COMBUSTION STABILITY

7?

ELECTRONIC FUEL INJECTION

INTAKE PORT

INTAKE
MANIFOLD

FUEL
INJECTOR

throttle valve

INTAKE PORT

INTAKE
MANIFOLD-^

FUEL
INJECTOR

THROTTLE VALVE

Figure 36
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VEHICLE DURABILITY TEST
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Figure 38

MARINIZED 13B ENGINE

Figure 39
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Figure 40

MARINIZED 13B
PERFORMANCE engine



durability test
ENGINE ADVANCE ENGINE i2A (p „
INERTIA WEIGHT : 2750 LB 3)
CATALYST OXIDATION CATALYCt
WITH EGR MAX. 9%

CVS HOT

J - Q CVS COLD-HOT
" Q W U

CVS HOT " '

CVS COLD-HOT

—I--------------- 1-------------------- 1--------------------- 1____________ I (KM)
■00 40.000 50,000 60,000 70.000 80 000

__________________ I____________________ I (MILE)
«.000 30.000 40,000 50.000
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Figure 38
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Figure 43

ROTARY MARCH

Figure 42

13B RACING ENGINE
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ARCH

Figure 42

engine

c»9ure 43

S2

SIDE PORT PERIPHERAL PORT
(PRODUCTION)

Figure 44

OIL SUPPLY SYSTEM
THROUGH PERIPHERAL PORTS
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LUCAS TYPE FUEL INJECTION

Figure 46
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UPDATE OF DEVELOPMENT ON THE NEW AUDI NSU

ROTARY ENGINE GENERATION

Richard van Basshuysen
Audi NSU Auto Union

Since 1971, AUDI NSU has developed a new generation of
rotary engines with a chamber volume of 750 cc as a two rotor
automotive powerplant, called KKM 871- This engine can be
compared to a 3 liter or 183 cubic inch, six-cylinder
reciprocating engine.

In the following, the development and the current status
will be presented.

1, GENERAL LAYOUT
The general layout of the new rotary engine generation resulted
out of the target to develop a comfort powerplant for passenger
cars with front wheel drive.
The geometric layout has been optimized by analytical and
empirical investigations. Fig. 1 is a graph of this optimizing
study showing the eccentricity as axis of ordinate, rotor radius
as abscissa coordinate and rotor width as parameter lines g.
The additional lines of parameter f represent constant specific
intake port areas, only valid for an engine with side intake port.
For the desired chamber volume a zone is defined, in which the
most favourable range of engine geometry in respect to strength
and structure is marked by the limitation lines a, b, c, d and e.
Within this area of favourable engine design the KKM 871 has been
selected with 17 mm eccentricity, 122,5 mm rotor radius and
69 mm rotor width. This results in sufficient safety margins to
all limitation lines under consideration of an engine size
as small as possible. This geometric layout was accompanied by
thermodynamic calculations and investigations using simulation
models.

2. ENGINE STRUCTURE
Based on the preliminary examinations the engine has been deve­
loped up to the current status as shown in Fig. 2 with the
following characteristic features:

- water cooling for engine housings
- oil cooling for rotor, thermostatically controlled
- dual side intake port, peripheral exhaust port
- mixture preparation by Bosch-K-Jetronic-

fuel injection system
- two fuel injection nozzles per bank
- direct lubrication of the gas sealing
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- dual ignition with two separate ignition systems
- dual scraper ring oil seal
- exhaust emission control system with catalytic

conve rte r
Fig. 3 shows a picture of a prototype experimental engine with
the intake manifold for the K-Jetronic.
In the following various items of the structural configuration
mentioned will be further explained.

2.1. Intake and exhaust system
In the beginning of the development extensive comparison tests
have been conducted between the same engine with peripheral and
side intake port to find the most suitable intake system. The
decision was made in favour of the double side port configuration
that had already shown operational advantages in earlier NSU-experi-
mental engines. The major factors that applied in this decision
were :

- far less sensitivity to the tuning of the
exhaust system with aftertreatment devices

- less influence to the tuning of the intake system
- lower induction noise
- possibility of port timing of intake and exhaust
with nearly no overlap

- and by favourable selection of engine geometry
roughly the same performance as with the
peripheral port configuration

by

one
one

2.2. Fuel injection system
To realize a lean burn concept and according to basic invest!
gations a standard Bosch-K-Jetronic. uw
6-cylinder reciprocating engines has be
Fig. k shows the complete mixture l_ '
air quantity is metered by an air flow
mixture control unit. /
a fuel distributor apportions a specific fuel auant
injection nozzles into the combustion chamb
distributor with 6 exits is used both " 7 *
chamber will be supplied with different fuel quantises:

the rotor housing injection nozzle with
two thirds of the total fuel per chamber.
connection of two exits.

manifold injection nozzle with

per chamber by

used for production
-Jen selected.

supply system. The intake
. ,. —J sensor installed in theAccording to the volume of air metered.

;ity via the
er. Since a fuel

per

- the intake
third of the fuel quantity
distributor exit.
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__ i --- x ' — J-experi-

this decision

ivity to the tuning of the
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noise
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e selection of engine geometry
performance as with the
configuration

*nd according to basic investi-
*nic, used for production
* has been selected.
'e supply system. The intake
r flow sensor installed in the
to the volume of air metered.
specific fuel quantity via the
•stion chamber. Since a fuel

both injection nozzles per
fferent fuel quantities*
injection nozzle with
total fuel per chamber, by
exits.
td injection nozzle with one
quantity per chamber by one

nozzle is provided with an air jacket. The air,
is directed radially onto

An electromagnetic start valve, placed at the common intake
manifold, is under certain conditions injecting an additional
quantity of fuel in case of engine starting. During the
warm-up period an increased fuel quantity will be provided
via a warm-up control.
If, under this condition, the throttle valve is closed,
supplementary air is inducted via the additional-air-valve
for stabilization respectively increase of idling speed. The
intake manifold shows a design, in which downstream of the
common part each intake channel has a separate air supply.
The two outer intake pipes, connected to the front and
rear side housings are equipped with one intake manifold
nozzle each, whereas the two pipes of the intermediate housing
are without injection nozzles and therefore feeding air only.
The coasting valve shown in Fig. 4 has the function to cut off
the air under coasting condition,which is defined by closed
throttle valve, gear and clutch engaged and engine speed above
idling. By air-cut-off, the air-flow sensor in the mixture
control is not operating and thus the fuel supply is interrupted.
A more detailed illustration of the rotor housing injection
nozzle is shown in Fig. 5. In difference to a standard fuel
injection, this
selfinducted by such a configuration,
the fuel jet via a narrow gap at the tip of the nozzle.

2.3. Gas sealing lubrication system
By using fuel injection it is no more possible to apply a
lubrication system based on oil/fuol mixture. Consequently
a new direct lubrication system for the gas sealing as shown
in Fig. 5 has been developed. In this system oil and air
as shown in section A-A will be supplied via channels in the
rotor housing to small recesses in the side housing. The
lubrication oil thus entering the combustion chamber will be
distributed to the trochoid surface as well as to the side
housing surfaces.

2.4. Ignition System
The ignition system used is a transistorized coil ignition
system with a considerably decreased inner resistance resulting
in a steeper increase of voltage and less shunting effect.
The energy storage becomes nearly independant from engine speed
and by this the drop of ignition voltage capability at high
speeds will be reduced.Fig. 6 shows the ignition voltage capability of a conventional
and a transistorized coil ignition system in comparison to the
range of the voltage requirement between a new and a used
spark plug indicated by the cross hatched area. It is obvious
that the transistorized ignition system offers a considerable
higher safety margin.The two distributors, which are of conventional type, allow
different ignition timings to be set for e ea ing an or
the trailing spark plug. An inductive ignition timing control
guarantees an accurate and f ree-of-mamtenance operation.
Fig. 7 shows the position and design of the spark plugs as well
as the configuration of the shooting o es.
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, This results
‘ ? spark plug pre-chamber
-3 time in a purification of

that can be responsible for
additionally supported by a

be seen
the surface

i provided with a narrow shooting hole
The trailing spar* pl g P aCross the apex seal tip.
by reason of reducing e dislocated eccentrically
The center of this shooting ntation TVi ■> o rncnl 4-«~to the opposite direction of rotor rotation. -
in a purposefully scavenging o . e . M
by fresh mixture and at the same -
this pre-chamber from deposites,
preignition. This effect is i---- -
conical recess in the spark plug ace as
in the drawn up detail. Both spark plugs are o
gap type with an additional ground electro e.

2.5. Rotor cooling and rotor design
The KKM 871 is provided with a thermostatically controlled
rotor cooling for faster warm-up and for maintaining a higher
temperature level on the rotor flank respectively rotor recess.
This is a measure to improve the mixture preparation in the
combustion chamber and to decrease the friction losses.
Fig. 8 indicates the effect of this control. The graph shows
the different areas in which the oil jet will be open, closed.
or regulating depending on engine speed and load.
The design of the inner structure of the rotor has been modi­
fied to realize a directed cooling oil flow as shown in principle
in Fig. 9- The cooling oil is injected into the rotor on the
left side by the oil jet. In the areas below the apex seal groove
the oil will flow over to the other side and than will be forced
out of the rotor by way of ribs. By such an oil flow system.
the oil will pass mainly the areas of the sealing elements and
by this the cooling effect is concentrated on the critical places.
tig. 10 shows the reduction of friction mean effective pressure
with this new rotorz called thin film, type in comparison to the
rotor with an interior cell structure used so far.

compliance with the
catalytic converters

with a short s
serves for g ' '
the catalyst as well as for
are metal support catalysts
German Company Degussa.

P.6. Exhaust emission control

In respect to exhaust emission control for
US and Japanese requirements, systems with
have been selected.

6n0Wb the principles of these systems differentiated
startin ? J version which includes a so called
starting catalytic converter, and the Japanese version with
one converter only. Looking at the US ersion witnivtir x , tne Ub“system. the starting cata-lytiv converter is located clnca +-« °reach ns -wi xu °Se t0 the en5lne exhaust port toreacn as last as possible the react’nn x„^ x , ,Currently this converter consists be‘V'erature needed.
port and is provided with a bvr> ° °ne cabalyst Per exhaustcold Starting cond!^n \he by *
the starting converter and when dlrected through
reach a certain value, this converter*wm ,and, Cat1 temperature
the main converter will remain in r x • bG byPassed and onlyThe latter converter contX 4o cX Jst’ 1

‘ t spacing in between The ly ts loCated in-line
generating a more turbulent*^ lnt° tW° seGrae"ts
:t uon __ r-. „ exhaust gas flow through

wi h :rxWara“UP- Presently used
Platinum coating from the
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Due to the richer air/fuel mixture under cold start condition
it is still of an advantage and for the stringent US-3tandards
necessary, to use an air pump for secondary air injection.
ThiS aWeVer’ W1i be CUt Off’ if the water temperature
exceeds bo degree centigrade.

3, TEST RESULTS
The following items present test results with the KKM 871,
related mainly to the engine configuration described so far.
The results also include some data of the different engine
development stages and are explained by means of fuel consumption.
exhaust emission, noise emission and durability.

3,1, Engine Performance
The performance at wide open throttle is shown in Fig. 12
indicating the maximum output at 65OO rpm of 165 horse power,
a maximum BMSP of 130 PSI and a minimum specific fuel
consumption of .Ibs/HP-HR.

3.2. Fuel Consumption
Concerning fuel consumption one of the main targets was to
reach the level of comparable European reciprocating engines
This has been realized by improvements in the fields of:

- mixture preparation
- gas sealing system
- friction losses
- ignition
- combustion

centigrade

. 13 was used. Hereby,
injection
forming an

3.2.1 Ideal mixtureIn respect to mixture preparation a principle investigation with
a so called "ideal mixture" has been conducted to find out, to
what extent the lean out ability and the fuel consumption can be
improved only by a perfect preparation of the air-fuel mixture.
For this purpose a special test arrangement for ideal mixture
formation as schematically shown in Fig.the intake air as well as the fuel delivered by a fuel
system, will be heated up sufficiently before both are
ideal mixture in a heated reservoir.Out of this reservoir a homogeneous charge of 70 degree
will be inducted by the engine. Due to the homogenization, the
cyclic variations of the air-fuel ratio are omitted. The high
mixture temperature prevents a condensation of the ftel in the
intake passage, which guarantees a uniform composition of the
charge inducted. The test results with this system are shown m
Fig. 1^. At four characteristic points of the engine operating
range, the specific fuel consumption is plotted over the excess
air ratio. The engine with ideal mixture is compared with

carburetted engines.
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As shown
to that of reciprocating
measures applied so far.

by these results the target of fuel consumption equal
engines has been realized by the

An increase of fuel economy
driving condition between 8 and 11 percent

K-Jetronic compared with the same
_------ - Fuel economy at constant
airopean cars with 6-cylinder reciprocating

18. V/hereas the reciprocating engines,
are only complying with the present European exhaust
standards, the KKM 8?1 is equipped with an exhaust
control system for future stringent US-standards.

• improvement of lean out
The measurements show a sl6 and a reduction of the
ability up to excess air ratios
minimum specific fuel consumption.
3. 2. 2._Engine_operation_ v/ith_ K-Jet ronic_
___ - ---- . , mixture has indicated, thatThe investigation with the ^eal attai
a lean burn concept can be realize « v.nrnn„Awith a standard mixture preparation device. For .his pirpos
the carburetor used so far has been replaced by the Bosch h-Jetronic.
Experiments have shown, that with this fuel injection system the
best results so far in respect to mixture preparation and
driveability have been gained with the injection nozzle^
location shown already. It was also found, that an improvement
of atomization of the fuel jet, and by that, a lower penetrating
depth could be realized with the annular air jacket of the
rotor housing nozzle. As the nozzle is located close to the
intake ports, where vacuum is always present, the air is
self-inducted via this air jacket and is reducing the fuel
droplet size obviously. Fig. 15 shows the average test results
with this system in comparison to engines with carburetor.
The curves are very similar to those with the ideal mixture.
This means nearly same lean out ability and a displacement of
the minimum specific fuel consumption to higher excess air
ratios, both requirements for a lean burn concept. Another
comparison, shown in Fig. 16. where SFC is plotted versus
BMEP at 2000 rpm, demonstrates the improvement in SFC related
to the different development stages. The curves of the
prototypes originate from engine versions without exhaust
emission control systems. How the improvements in mixture
preparation affect the fuel economy on the road shows a
comparison test in Fig. 17.
under transient (’
could be gained with the I
engine equipped with carburetor.
speed in comparison to E’
engines are shown in Fig
however,
emission
emission 

--- Exhaust Emission and fuel economy
In the following, exhaust emission test results th
corresponding fuel economy data will ho n and the
disadvantage of rotary engines in respect to^ h* CUrr<?nt
is still the higher base emission nf P u t exhaust emissions
Fig. 19 shows, that in the course of ^nburned hydrocarbons.
consumption, the base emissions of °f fuel
monoxides have been reduced consido Ai Caroons and carbon
in the CVS test cycle of the diff \ ^ere the base emissions
carburetor and prototype tv th Prototypes II and III with

with o-Jetronic are compared.
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so
However it has

--  -- - comply with
the 50 000 miles endurance test. These
still running at the time of this presentation.

. the data represent a status of the engine
. measure for reduction.

In respect to CO the emission is far below the standards
that no further problems should be expected I' ’
still to be proven, that the HC-emissions will
the standards after *'
endurance tests are
Concerning NO , ' ’J Xwithout any special

Integrated in this diagram are average values of measurements
conducted by an US-automobile company in the United States
with an engine and exhaust emission control system of the
current development status.
The test data from these measurements are within the range
of the data specified by Audi NSU. For completion the
corresponding values of the city fuel economy are added.
In Fig. 21 the ranges of fuel economy in the City- and Highway­
test and the combined fuel economy are shown. Indicated
additionally are the measurements of the US-automobile
company confirming again our test data.
For further information fuel economy data should be mentioned
resulting out of a trip through the United States with two
Audi NSU cars. The driving conditions over a total distance
of approximately 2800 miles for each car includes city,
highway and test driving. The average fuel economy was
20.8 mpg with automatic transmission and 22.9 mpg with a
5-speed manual transmission. Measurements on highway driving
only have shown 2^t.^ mpg for the automatic and 27*6 mpg
for the manual transmission car.

With the exhaust emission control system for Japan, the ranges
of test results in the 10-Mode test gained so far are shown
in Fig. 22. In this diagram results of measurements conducted
by a Japanese automobile company in Japan with an Audi NSU
test vehicle are included. These data, however, show a somewhat
higher NO -emission. Since the NO data represent values without
exhaust gas recirculation, additional investigations will be
performed with EGR as well as with oxygen sensor control and
three-wav-catalysts to comply with the stringent 78 standards
with a sufficient safety margine for production engines.
Fig. 23 demonstrates, that in the Japanese 11-mode test the
results are sufficiently below the standards of 1978. By this
reason no further reduction, for instance by using a starting
catalytic converter, is necessary.
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more and more important,
evaluated under this aspect.

Durability and wear
Experiences with former production engines of Audi NSU in
respect to durability and wear have led to a very thorough
testing of the new engine. Fig. 25 shows the wear results
out of numerous durability tests conducted with experimental
engines of the different prototype versions. Since the
wear data over 6? 000 miles shown can be related directly to
the life time of the engine, equivalent durability as with
reciprocating engines can be expected.

3.4. Noise Emission
Since the noise emission becomes
the rotary engine should also be
As already known, the rotary engine is adva^aS®°^® m respect
to low vibration and low mechanical noise. The latter becomes
especially evident under road driving condition at higher engine
speeds. Noise comparison tests have been conducted with a
reciprocating engine and the KKM 8?1 both installed in the
same car.
Fig. 24 shows the test results due to the test requirements of
the German Certification Authority, recorded under no load
condition over the whole engine speed range from a point 7 meters
sideways of the vehicle. It is obvious, that evaluating the
dB(A) level, the rotary engine is lower in noise compared
to the reciprocating engine due to its lower mechanical noise
emission.
Looking at the dB(B) level, which in difference to the dB (A)
evaluates preferably the bass frequences, the lower mechanical
noise level of the rotary engine comes into effect again at
higher engine speeds.

• a trip through Japan with
The fuel economy measured during - th a 5-speed manual
the Audi NSU test vehicle e values over a
transmission has shown the following
total distance of approximately 1W miles

19.5 mpg or 8,3 km/1 including test driving and

emission tests
and 22,3 mpg or 9-5 km/1 excluding test driving

and emission tests.

4. Conclusion
The present development status of the KKM 8?1 at Audi NSU
has shown, that in respect to fuel economy the level of

means of actual endurance test results T ° 6 approved
requirements further reduction of°NO * respect to the Japanese
noise emission of the rotary enrinJ n®Ces5ary- The mechanical
in respect to possible future restrict^°n°trates 1 -e advantage
Results of comprehensive durability •
time equal to that of reciprocating en«ri lndlCate engine life
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Figure 6. - Ignition voltage capability and requirement depending on ignition system and spark gap.
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COIL IGNITION

SPARK GAP
• 0 24 IN (,6MM|
(NEW PLUG)

•043 IN (1.1 MM)
(USED PLUG!

OOU 5UUU 6000
EED-RPM

E CAPABILITY'

wnt depending on ignition system and sparkgap.

SPARK PLUG INSERT

'IOSIN' 1.46 IN' ECCENTRICITY
(27MM) (37MM)

Figure 7. - Arrangement of spark plugs.
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Figure 8. - Chart of oil jet control for rotor cooling.
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Figure 11. - Exhaust emission control system.
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Figure 13. - Arrangement of ideal mixture formation system.
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Figure 14. - SFC at part load of R. E with ideal mixture.
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Figure 16. - Specific fuel consumption at 2000 rpm.
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Figure 17. - Comparison of fuel economy.
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REVIEW OF THE RHEIN-FLUGZEUGBAU WANKEL

POWERED AIRCRAFT PROGRAM

Manfred Riethmuller
Audi NSU Auto Union

1.) Introduction:

The Rhein-Flugzeugbau GmbH hereinafter called EFB
founded in 1956 is a division of the VFW-Fokker
Aerospace Industries and their program includes
among others the development of light aircraft with
special emphasis on modern propulsion systems and
production.
Since 1971, RFB is working on the application of
rotary engines to their aircraft program.
Fig. 1 shows different types of aircrafts under the
development of which the most interesting projects
are the Fanliner and the Fantrainer. For both, the
heart of the concept is the integrated ducted-fan
propulsion system using rotary engines.

The decision for the application of rotary engines
based on the general opinion, that only high rotating
fans could be used as integrated ducted-fans. Therefore
RFB looked for engines with the capability to run at
high revolutions. On the other hand, the powerplant
should feature smaller space requirements than currently
available conventional reciprocating engines, which
were not modified in this respect since many years.

The reason for the need of smaller engines was the
installation of the powerplant behind the cockpit
and to reduce the loss of some area in the hub region
of the ducted-fan necessary for ventilation purposes
of the engine compartment. Another reason was, that
by using a rotary engine based on an automotive
production version, the initial price would be low.
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2. Fanliner
Fig. 2 Shows the Fanliner on the ground. The first
Fanliner, that started flying in October 1973, was
equipped with an Audi NSU two-rotor production
rotary engine available as an automotive configuration
with 115 Horsepower at 6000 rpm driving an RFB
three-bladed fan at full engine speed. In 1971*

RFB fitted a 150 horsepower prototype engine from
Audi NSU to the Fanliner. This engine was a
former prototype version of the current KKM 871 •
The powerplant based on an automotive engine was
progressively modified by RFB resulting in a
second aircraft prototype rotary engine which
took his first flight in 1975-
At the beginning of flight testing it was found,
however, that although the engine performance has
shown very good results, the noise level of the
whole propulsion system was too high, caused by
the ducted-fan. For this reason RFB conducted
several fan speed tests in flight and on the
test bench with the result, that the high revolution
of the ducted-fan can be lowered by means of a
reduction gearbox without any loss of performance,
but resulting in a much lower noise level that can
comply with the limits of the German Federal
Aviation Association called LBA.
Present measured in flight noise at the rotary engines
permitted full-throttle cruise during horizontal
overflight at 1000 feet is 65 dB(A). That is about
7 dB(A) below the current German light-aircraft limit.
With the new propulsion configuration about Uo flights
with a total flying time of 220 hours have been
conducted.
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The present engine installed in the Fanliner and
shown in the Fig. x delivers between 150 and 160
horsepower and has a wet engine weight of 159 kg
or approximately 350 pounds. It has to be mentioned.
however, that this engine weight includes cast iron
side housings as used for the automotive application.
By changing these parts to aluminum material the
weight can be reduced by approx. 20 kg respectively
45 pounds. On the other hand, since the engine is
running at 6000 rpm and the ducted fan with 3000 rpm,
there will be an additional weight for the reduction
gearbox.
For the modification of the automotive prototype engine
as supplied by AUDI NSU into an aircraft engine the
following items were changed.

a) The carburetor was replaced by a Bendix
fuel injection system together with a new
intake manifold shown in the picture.

b) Several accessories such as generator, starter,
fuel pump and some parts of the ignition system
into parts with LBA certification

c) dual v-belt-drive
d) and finally the flywheel with gear

Fig. shows the engine from the spark plug side with
the mounted reduction gear box. Since the engine is
initially designed with two spark plugs per bank and
two independant ignition circuits there is no necessity
for additional spark plugs or a second ignition circui

for safety reasons.

Experiences out of the flight
advantages in respect to the rotary

have shown several
engine:

smooth_running_characte_ristic

The lack of
fatigue for
on the many

vibration translates into less
the occupants and less stress
connections holding the airplane

together.
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- safer_flying
In'contrast to the conventional engine there
is no problem of engine blockage due to
piston seizure. This reduces the possibility
of engine failure in flight.

highly effective mixture_control_versus_altitude
The lean out ability without powerloss is much
better than with reciprocating engines and there
is no problem of overheating under this condition.
The engine runs at full throttle also under cruise
speed without any harm to the engine.

- no warm up time is necessary which means
little wasted fuel and no delays in taxiing
out to a take-off point and resulting in less
wear on the engine itself.

Although the fuel consumption of the KKM 871 aircraft
engine with approx. 235 grams or .51 pounds per horse power
and hour under 75 % WOT condition, is not as good as with
reciprocating engines of similar output, this disadvantage
will be compensated by better performance. In respect to
fuel consumption it has to be mentioned, that this proto-
tpye engine does not represent the updated features of the
current Audi NSU KKM 871 automotive engine which includes
further measures for fuel consumption reduction.
Since the decision for a production of the automotive engine
has been delayed by Audi NSU, it became necessary for RFB
to look out for alternative powerplants.
It was found that for an installation in the Fanliner the
following engines could be used which are listed with some
data in Fig. 5:

in the reciprocating engine field the
Lycoming - 360 A}A and -J2O-H

and in the rotary engine field the
Mazda 1} B, but this engine only
in connection with turbocharging

and the Citroen rotary engine. up to 180 horsepower
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the conventional engine there
if engine blockage due to

This reduces the possibility
re in flight.

• mixture control versus altitud
lity without powerloss is much"
reciprocating engines and there
overheating under this condition

at full throttle also under cruise
•r harm to the engine.
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yet been made, the
most promising
—so into consideration
f for about 800 hours
- 33 for the purpose
■ engine as an

Although a final decision has not
Citroen rotary engine will be the
alternative in the moment taking al
that Citroen has tested the engine
already in respect to the FAA Part
to obtain the certification of the
aircraft propulsion system.

The lycoming reciprocating engines have the disadvantage,
that the installation space needed will result in a
considerably decreased area for the fan respectively
fan blade length. A general comparison of the space and
frontal area requirement between the rotary engines and
reciprocating engines mentioned without the reduction
gear box, show the following figures:

in space
approx. 14 cu ft will be needed
for reciprocating engines compared to
approx. 5 cu ft for the rotary engines

This means the reciprocating engine would require roughly
3 times more space than the rotary engines.
in respect to the frontal area.

approx. 820 sq in compared to approx.
460 sq in for the rotary engine

which means roughly twice as much area needed for the

reciprocating engine.
This comparison indicates, that the rotary engine offers
much more freedom in the layout of small air planes and

, • thp Fanliner chances areespecially for the design of the tanlin
, o current reciprocating engine.not good to apply a current re p

3. Fantrainer:
Most of the items covered so

far will also apply to the

Fantrainer concept.
The Fantrainer as shown in Fig
a two-seater utility trainer.

6 in flight represents
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The development and testing is sponsored by the
German Minister of Defense. The target of this
program is the introduction of the novel fan-propulsion
in connection with rotary engines and turbines for
the task of an advanced and cost saving training

of jet pilots.

The Fantrainer was initially designed for the installation
of the 4-rotor rotary engine with JOO horsepower developed
by Mercedes-Benz and tested in their sports car called
C 111. Since the production of this engine was cancelled
and Audi NSU prototype rotary engines were available
it was decided to use 2 of these engines with 150 Horsepower
each, instead. The first flight with this configuration
took place in October 1977*

The arrangement of the two engines in the engine compartment
is shown in principle in Fig. 7*

The rotary engines are coupled via the gearbox unit,
driving the integrated ducted-fan. In case of failure
of one engine, the disengagement automatically occurs
by the free wheel clutch between the engines and gear box
and the flight mission can be completed with the running
engine.
The investigation of the Twin-Engine Gearbox system
as well as the development and production of the
gear box will be performed by the Klockne r-Humboldt-Deutz
Company.
Fig. 8 shows a Fantrainer mock-up with the actual installation
of the propulsion system behind the cockpit and the configuration
of the exhaust pipes. The complete powerplant is shown in
Fig. 9.

one upon another and are
The view from the

manifold, fuel
e of the exhaust pipes

engine has 4 injection nozzles
manifold tubes close to

The two rotary engines are mounted
connected by the reduction gear-box.
intake and exhaust side indicates the intake
injection nozzle location and the shap
which are partially shielded. One
located on each of the separate
the rotor housing intake port.
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Fig. 10 shows the powerplant from the spark plug side.
This whole unit has a weight of approx. JOO kg or
660 pounds.

With an output of 300 Horsepower, the Fantrainer
reaches a cruise speed of approx. 200 mph. The
flight performance drawn up in Fig. 11 shows the
flight envelope, take-off and landing performance.
climb performance, endurance, maximum range and
thrust versus speed. These diagrams however show only
theoretical values.
Due to actual flight analysis it was found, that with
the rotary engines KKM 871 in connection with the
current ducted-fan an 8 to 10 percent better flight
performance was obtained, which would not be possible
at present by using reciprocating engines.
In Fig. 12 a table is shown with different alternative
powerplants for the Fantrainer concept, including
several turbines, which, as indicated by the prices
are much more expensive than reciprocating engines
or modified rotary engines.

For further development and testing of the Fantrainer
the situation has changed in the meantime differently

to that of the Fanliner.
The comparison of different alternative powerplant
becomes less interesting since the German minister
of defence decided to use the turbine version of
the Fantrainer with the Allison 250 C 20 turbine
giving approx. 420 horsepower. RFB will in future
apply only this powerplant to the Fantrainer.

4. Summary:The test hours conducted so far by RFB with the Audi NSU
rotary engine KKM 871 in the Fanliner and Fantrainer
amounts to a total of 423 hours. The number of actual

flights amounts to a total of 707 flights.
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Due to the experience of RFB, the rotary engine
has proved its capability as an engine for aircraft
application with very good results and with the

advantages of
- smooth running characteristic
- no sudden engine failure
- high effective mixture control versus altitude

and no overheating by lean mixture.
- good performance compensating the presently
higher fuel consumption

- low initial price by mass production of the
basic engine for automotive application.

Although the situation has changed for the Fantrainer
in respect to rotary engine application, the Fanliner
still will be equipped with rotary engines and the
tests continue. However, what type of rotary engine
will be finally used is not decided yet.
Furthermore it has to be mentioned, that the engines
applied and tested so far are modified automotive
rotary engines which are not optimized in lay out and
design as an aircraft engine.
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Figure 4
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RHEIN-FLUGZEUGBAU
THE FANTRAINER CONCEPT

The been of the Fantrainer concept is the integrated ducted-fen propulsion system. This system is made up of two 150 hp
Wankel engines coupled by e geaibox end connected to a ducted-fan which is en integrated part of the fuselage Instead of he
two Wankel engines one turboshaft engine (from 400 eshp upwards) can also be used

The characteristics of this propulsion system are very similar to |et engines thus providing an excellent platform for fighter type

cockpits.

By changing the wing area of the Fantrainer different wing loadings are achievable The following table describes the possible
engine-wing combinations'

VERSIONS Normal Wing Smaller Wing Larger Wing

2 Wankel Engines AWI-2 AWI-4
1 Turboshaft

Engme ATI-2 ATI2K1 ATM

Figure 7

Rhwn-flugztugbati G.m.b.H.

Figure 8
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ISA

RHEIN-FLUGZEUGBAU
FLIGHT PERFORMANCE

FANTRAINER AWI-2

Figure 11

AWI-2 1 TRIEBWERK RHEIN -
I ENGINE FLUGZEUGBAU

----------------- 1--------------------------—------------- -------------- GMBH

TRIEBWERK WANKELMOTOR HUBKOLBENMOTOR PROPELLERTURBINE 1
ENGINE WANKEL ROTARY ENG. PISTON ENGINE TURBOPROP

AUDI NSU
2«2Scheiben

CITROEN
2x2Scheiben LYC 10-540

ALLISON
250 C 20 PT6B-16

LYCOMING
LTS 101

PS/ U/Min
PS/ RRM 2x150/6000 190/6000 300/2700 410/6000 732/6230 595/6000

Verbrauch kp/PSh
Consumption 0,235 0,212 0,230 0,277 0,240 0,260

JffGewicht kp
Weight 270 290 230 80 150 120

Preis DM
Price ~ 16000,- ? 20 000 - 80 000,- 170 000,- 90 000

★Wasserkuhlungkf
Watercooling 20 ? - - - -

Getnebe kp
Gearbox 31 20 - ~16 ~20 ~20

fcEinbaugewichte

3^744

Figure 12
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ROTARY ENGINE DEVELOPMENTS at CIIRTTCC HDTru-r «CURTISS-WRIGHT OVER THE PAST 20 YEARS

and review of general aviation engine potential

Charles Jones
Curtiss-Wright Corporation

This paper will very briefly cover the range of Rotary Engine development

work at Curtiss-Wright since 1958, review highlights of recent direct injected

stratified results accomplished in the last few years, and discuss several

aviation related engine trials, tests, and possible growth directions. The

earlier technical material is drawn from more detailed SAE publications.

Background, Development History, and Popular Misconceptions

The baseline standard has changed since Rotary Engine development activity

started in this country twenty years ago. Energy and raw material conservation

have taken on new import and cast the size and weight advantages of the Rotary

Engine, for any application, in a new light. Figure 1 shows the relative weight

picture in the engine size range applicable to General Aviation.

The Rotary Engine is inherently a high power density machine because the

ratio of working volume to total power section volume is high and the kinematics

permit high speed. This speed capability derives from unrestricted intake and

exhaust porting, absence of valve and drive system dynamics, complete balance with

any number of rotors, non-reversal of the sealing element path, and a low rise

of friction power with speed.

Of course, smaller engine size and commensurate weight only translate into

fuel consumption advantages in transport use if the engine has comparable efficiency

In addition, the engine must be durable and producible.

The simplicity of the engine also introduces obstacles to attainment of

nf the apex seals with the trochoid surfacethe technical goals. The line-contact of tne apex
4- -tn thP combustion zone require fundamentally

and the localization of heat input in t
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sound design approaches to realize the full potential of the geometry.

I will briefly cover durability and economy developments at Curtiss-Wright

and let the fact of over a million rotary automobiles address directly to the

producibility issue.

Taking the durability aspects first, it is true that when we ran our first

engine in 1959, where the seals were scaled from the NSU-Wankel dual rotating

machine which was the starting point for all of these developments, seal life­

spans were best measured in minutes. We were able, however, to design sealing

elements by mid 1959 which would wear out before they failed mechanically,

although the "wear-out life" at high power was only a matter of hours until 1960.

All of the various wear solutions--and there are several--were achieved on the

basis of findings metallurgically compatible combination, rather than by basic

design changes. The particular resolution which we adopted at Curtiss-Wright

in 1962 has been proven to have acceptable high speed and high power capability,
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higher engine

in up to 2000hours

This material

as shown in Figure 2, which provides growth margin for future

ratings. The trochoid coating itself shows virtually no wear

continuous testing, as well as cumulative totals much higher.

combination consists of detonation gun applied tungsten carbide - cobalt on the

trochoid surface with alloy cast iron apex seals. This approach is acceptable

for aircraft or military engines but is too expensive, and unnecessarily durable,

for the less stringent operating cycle requirements of an automotive engine;

however, lower cost plasma sprayed carbides have been used commercially in OMC’s

snowmobile engines and promising new variations are under development. The

current materials used in Toyo Kogyo and NSU automobiles, which were either developed

or refined during this decade, provide an engine life that is at least competi­

tive with reciprocating engines. Since NSU's, Toyo-Kogyo's and Curtiss-Wright

engines are all capable of WOT, full speed operation for significantly longer sus­

tained periods than production reciprocating automotive engines, it is probable that

■avsing. Chrysler expressed interest, in late 1962, in
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7 solutions to seal wear and only

tnct results can decide which of thesp ic xtest tnese ls most cost-effective for a particular
application and at a given facility.

Another area where the out-of-time-phase popular image dies hard is

Rotary Engine fuel economy performance. Here, too, the solutions differ for

the particular application. The American automobile engine of the past, with

its power reserve, large displacement, and low BMEP normal road-load operation,

was a very different animal than the European high output machine which normally

operated closer to the bottom hook of its BSFC vs. BMEP curve. Perhaps we were

insufficiently automotive-oriented at Curtiss-Wright, but our early preoccupation

with high power density resulted in some rude awakenings when American automotive

companies compared our 20-30 BMEP fuel consumption data with the engines they were

then using. Chrysler expressed interest, in late 1962, in road testing an engine

provided we could first demonstrate a significant low end improvement to bring

our data into the acceptable automotive range. By the end of 1962, we had

succeeded in reducing the SFC at the more difficult low speed and low power end,

as shown in Figure 3. A number of items were tried.on the RC1-60 Rig Engine,

Figure 4, but the most significant were:

1. Two or three piece apex seals, where the moveable triangular

corner reduces end leakage which is particularly damaging at

low engine speeds.

2. Relocation of the spark plug electrodes as close as possible

to the trochoid surface, which promotes consistent firing,

particularly at high manifold vacuum (closed throttle).

3. Change from peripheral (radial) to side ports.
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The latter is a particularly meaningful change because peripheral intake ports

can admit about 20% more air, with zero back pressure, but the geometry will

not permit low exhaust and inlet event overlap. When the throttle is closed

for low power, the intake manifold vacuum will encourage exhaust gas to flow

across to the intake during the long period that both ports are simultaneously

open and this excess of EGR, at power levels when it is not needed, adversely

affects combustion regularity and, in turn, fuel consumption. For this reason,

we have since regarded controlled overlap side inlet ports as the best choice

for an automotive normally carbureted Rotary Engine, whereas we still favor

peripheral ports for most high speed and output applications.

Having demonstrated acceptable levels of fuel economy, design of a two

rotor automotive prototype, Figure 5, was initiated in early 1963 and was on

the Detroit free ways, in a 1964 Dodge Dart, by that fall. The two rotor fuel

consumption data, Figure 6, was consistent with the comparable single rotor

results. The automobile tests, Figure 7, in a vehicle which had not been fully

optimized for the RC2-60, confirmed the SFC comparison and showed equivalent

performance. Similar tests run elsewhere over the next few years came to

similar conclusions and no further development activity on this engine has

been pursued since the mid 1960's.

Although the performance of the RC2-60 had been proven, the engine subse­

quently served as an excellent vehicle to test system durability in a number of

diverse applications such as generator sets, single and twin-screw boats, mili­

tary fighting vehicles, trucks and aircraft. The latter tests are shown in

Figures 8, 9, and 10. For reasons which will be amplified later, an engine

configured for American automobile trials could not be an attractive aircraft

engine, but these inst.il.tio.s did de^strste the sustained high power capability
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weight advantages were not fully exploited because the side ports limited

output and the belt reduction systems with the fixed wing aircraft were heavy.

The work-horse engine since 1959, the Rd-60, Figure 4, is still a useful

tool, most recently serving as the Stratified Charge research rig. However,

about ten different sized experimental engines and twice that many model

variations were designed and built at Curtiss-Wright. They are of interest now

because they illustrate the scaling possibilities, particularly with respect to

size and number of rotors. These engines ranged in size from the 3 HP RC1-4.3

(one rotor of 4.3 cubic inches swept volume), Figure 11, to the RC1-1920,
Figure 12, scaled from the RC1-60 basic rig by a factor of the fTo

to provide 1000 HP/rotor. The trochoid form of this engine is the

same as the wider rotor 2500 cubic inch Ingersoll-Rand gas engine introduced on

field trials in 1976 (90,000 total hours on 13 units) and to production earlier

this month. The Ingersoll-Rand single and twin rotor engines, which are rated

at lower speeds dictated by driven equipment, develop 550 and 1100 horsepower,

respectively. The 4 rotor RC4-60 400 HP marine engine derivative, Figure 13, was

the world's first multi-rotor Wankel type engine when it ran in 1960. An air-cooled

RC2-90 engine, where the RC-60 rotor width was increased by 50%, was built and

tested in 1966. The RC2-75, Figure 14, a liquid-cooled general aviation ennine

Prototype, was derived from the RC2-60 by, among other apparent changes, widening

the rotor by 25% and changing to peripheral intake ports for increased power.

Hpure 15 shows the scaling factor influence by comparing rotor sizes. This

range helps put the sizing flexibility of the rotor in better perspective.

From this survey, it is apparent that the rotor can be scaled up or down

««)onatcly, its „dth can be ..ried, .nd engines c.n ba built.
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Similar to the piston engine, which also follows the square-cube laws of

scaling, the smallest and lightest engine will always be the one with the

largest number of small power units. However, since the Rotary is not con­

strained to specific discreet power section combinations for balance purposes

and since it is inherently small to begin with, the trade-offs have a different 

impact.

The thrust of many of these diverse developments was to demonstrate

application feasibility and technical capabilities in those areas, generally

high volume, where the vehicle OEM historically produced his own engine. This

was compatible with our role as a licensor of technology. However, R&D efforts

were also directed towards our own traditional engine fields, high output 

aircraft and military engines. In the case of Stratified Charge, our development

efforts started in 1962 in response to the military's interest in multi-fuel

engines. However, after the 1973 energy crisis, we recognized much broader

advantages for unthrottled direct injected Stratified Charge in the larger sense

of all commercial transport engines because of the fuel economy potential and

because the approach could theoretically reduce the Rotary's higher levels of

raw hydrocarbons at low output. Although this priority redirection to R&D

efforts supporting our technology licensor position partially diverted our own

aircraft engine R&D efforts, it was pivotal in leading to a 49 month USMC

development contract last year for a Stratified Charge LVA (Landing Vehicle

Assault) engine which is expected to lead to Curtiss-Wright production.

This 4 rotor 1500 HP engine is about the size of an office desk and expected

to be lighter than the military gas turbine in the XM-1 main battle tank. He

are now ready to test the first 350 cubic inch single rotor engine in a matter

of days, and are beginning to look more carefullv at r • , ■,areruiiy at commercial vehicular
possibilities of the same technology in enainpc ri. x .

engines closer to the size of our
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Stratifiei-Iharge

It is well known that the stratified charge engine operates at

overall lean mixtures beyond the spark ignition flammability point by

exploiting lightoff from a richer pilot zone. The primary incentive,

over the past few years, for developing automotive engines of this type

has been lower emissions, but the promise of improved fuel economy with

the leaner burning variations is generating extehsive and increasing

interest; wider range fuel capability is also expected to be important

in the future.

The two best developed approaches have been either formation of

the spark-ignitable zone by direct injection in the vicinity of the plug

or else use of a pre-chamber containing the relatively rich mixture, a

spark plug, and means for discharging the torch-like ignited mixture into

the main (leaner) combustion chamber.

Both methods are adaptable to.Rotary engines. Since we believe that

the direct chamber injection holds more long-term promise for low

with the lowest possible fuel consumption, primarily because the co

zone can, at least in the ideal case, be better confined by surrounding air

to S1>e ,ess »al, effects. Cortiss-Krt.ht has concentrated on this approach.

.ontial for detonation-free operation
This direction has also demonstrated po
on low octane "heavier" fuels, as well as a reduction in pumping

operation with a non-throttled . intake On the other hand, the
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technique, or its Rotary Engine counterpart, is simpler and promising for

that reason. The technical success of any of these systems will be related

to the extent that they can achieve operation at overall lean mixtures.

Where does the Rotary, Figure 16, fit in? If one accepts the premise

stated earlier that direct injection offers the best long-term potential,

we should compare operating principles of the Rotary stratified charge

basic approach with the Ford PROCO and Texaco TCCS reciprocating stratfied

charge engines. Although there are differences in detail between these

two reciprocating engines, both develop an air swirl to stratify the fuel­

air mixture strengths at appropriate locations within the combustion chamber

and both use conventional reciprocating engine valving. Production of this

induced turbulence, which is part of the key to solving the difficult

problem of having the mixtures properly distributed at all loads and

speeds, requires some combination of shrouded intake valves, piston and

head shapes,and nozzle injection angle in the reciprocating engine, but

in the Rotary, the required air motion is an outright "gift" deriving from

the basic engine geometry.

The rotor moves air past the wasp-waist of the trochoidal rotor

housing once every shaft revolution, Figure 17. The degree of turbulence

can be "tuned" by the shape of the rotor combustion pocket. Having

established a particular pattern of air motion, the next design freedom is

circumferential location of the nozzle and spark plug relative to this

turbulent air. The additional key variables include nozzle and spark plug

relationships and injection spray pattern relative to the rotor pocket.

The Rotary Stratified Charge Engine, unlike the Rotary carbureted

engine, does not suffer at low power/low speed from high exhaust intake
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porting overiap since it injects fuel after the intake port closes.

Accordingly, it can use peripheral (radial) intake ports with their

attendant better breathing characteristics than side intake ports. The

higher volumetric efficiency of peripheral intakeports can recoup loss

in air utilization at the top end that all injected stratified charge engines

experience because of the difficulty of having all of the fuel find the

proper quantity of air at the proper time. This air-breathing advantage

places the power density of radial intake ported naturally aspirated

Stratified Charge Rotary Engines at the same general level as automotive

side port carbureted Rotary Engines. The result is that the Stratified

Charge Rotary Engine is not only smaller and lighter than the Reciprocating

Stratified Charge Engine, but it has significantly higher power density

than even the homogeneous charge reciprocating engine. However, both en­

gine types have to face the problem of consistently maintaining a near-

stoichiometric mixture at the spark plug, over a wide speed and load range.

The development histories of Stratified Charge Engines which can operate

at diesel-range mixture strengths are fraught with configurations that would

run well at either end of the operating spectrum, but not the full range.

Ours was no exception.

The general housing design, nozzle orientation and spray pattern,

spark plug type and orientation, and rotor pocket system that was used

with the RC2-60U10 engine (Figure 18), as shown in Figure 19, ran very well

at the low ends (including cold-starting on JP-4 fuel down to -35°F) up

through mid to moderate power. However, when this system was introduced to

the higher rated RC2-9O, the engine could not meet its 310 HP target, Figure 20

This air-cooled direct drive engine, designed for a remote-controlled

drone helicopter, was intended to develop this output at less than
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one pound (dry) per horsepower. The "showerhead nozzle," Figure 21,

was better able to "wet" enough of the passing air, at the right time,

to demonstrate the required power output, but it lacked a protected zone

to initiate and complete combustion at low loads. Development of this

particular Stratified Charge Engine was never completed because of a change

in military planning, but research activity continued on a water-cooled

single rotor rig having the same power section (RC1-60 trochoid contour with

a 505$ wider rotor) and the RC1-60 until, in 1973, a combined version of

both previous injector types plus a spark plug firing to the nozzle gave us our

first broad-range operation and fuel consumptions better than a carbureted

engine. This configuration led to the basic design (Figure 22) approach

which we consider standard today. The single hole pilot nozzle fuel flow

is relatively small, varying only with RPM, but it is able to maintain a
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consistent torch effect to ignite the main fuel charge, which is varied

in rate to match load in the same manner as a Diesel engine.

The major development effort during 1975 and 1976 was directed towards

finding system variations of the basic pilot and main nozzle design which

would combine the advantages of economy, low emissions (in particular, HC)

and not give any ground on the independence of fuel octane and cetane

rating. The details of this effort are covered in SAE Paper No. 770044.

However, summarizing the fuel consumption development picture in

Figure 23, the RC2-60-U5 line is comparable to the data shown in Figure 6.

The "1973" line is the combination recessed and "showerhead" type nozzles,

with spark plug firing to the nozzle as discussed above. The 1974 line is

the dual nozzle pilot and main shown in Figure 22. The 1975 line is the

same housing run with a better match of rotor pocket-in this case, a
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JZZle as discussed above. The 1974 W ,s

bo''/n in Figure 22. The 1975 line is tl,e

tch of rotor pocket—in this case, a

leading pocket—and main nozzle soravspray pattern. The 1976 line is the same
basic configuration as the 1974 linp h.n- ~ .q line, but run with higher rotor housing
temperatures, facilitated in this case hut t -x □ .case, but not limited to, substitution
of cast iron for aluminum. An interesting finding was that raising the

rotor housing temperatures improved SFC significantly but had relatively

little effect on hydrocarbon (HC) emissions.

A large number of configuration variations were tested during the

1975-76 period and several interesting conclusions were drawn. One of

these was that higher compression ratio not only improves SFC to a degree

that would be expected with an Otto cycle engine, but that in the

Stratified Charge Engine, HC is improved as well. The explanation for the

HC improvement, which is also experienced with the Texaco direct injected

engine, is that the negative effects of increased surface/volume ratio and

quench/crevice volume for high compression ratio are minimal where the

bulk F/A ratio is so low and combustion is largely surrounded by air.

The reduction of rotor combustion pocket recess volume to increase

the compression ratio is illustrated in Figure 24. The effects of

compression ratio, for an early configuration which was not the best, on

(raw) specific HC and fuel consumption are shown in Figure 25.

Unfortunately, there are a number of dependent variables involved and the

increase of compression ratio has to be determined as an iterative process

with the rotor pocket shape and related nozzle spray location/patterns.

Just as housing temperature had a strong influence on fuel consumption

with minor HC effects, raising the rotor combustion surface temperature

. ............... ..... . ur at ipast so far, had little influence ondramatically influenced HC and, at lease
fllnl x- rntor surfaces were obtained by use of air-gapfuel consumption. Heated rotor
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insulated insert plates attached to the combustion face. A rotor designed

specifically for replaceable hot inserts, referred to as the bolt-on

hot insert design, is shown in Figure 26. Specific hydrocarbon comparisons

are shown in Figure 27. The trends are qualitative in the sense that

one standard rotor test had the advantage of an electronic fuel injection

system which the engine "preferred" for its consistent injection character­

istics, and the other had the same pilot but a different main nozzle

location.

The hot rotor data is replotted in Figure 28 with our target of raw

HC emissions for modern and well-designed automotive engines. Note also

that the HC levels plot on the same curve for all fuels tested. This was

generally the case for both emissions and fuel consumption (on weight

basis; heavier fuels, including diesel, all look even more attractive on

an output per gallon or other volume basis). Texaco and others have made

Xe
theX ,inO

/ spX

? tly

system"
X .pd
? „dete^ine

i'lndica’

Pri°r

dSe °‘
frotf u

, (ATC

that P’10t

is that

the bel

int where the w

curve shape

is shown, on

tot rot°r "

.5 min°r

•hie with *

Be.bw Prenn

.. „ niu=trate
MS

on

tes P°5:

■ngine

is co'

under

to i-

• to PO

rally determines the
fuel, generally (

, f. and "pilot plus maw

arJ rtc Pilot confi^orth. BTC P

ar«e«"t where the pt

virtue of recessing the nozzle/plug cavi V
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a strong case that the miles per barrel of crude oil can be maximized by

using a wide fuel tolerance engine which permits refinery optimization by

use of a middle distillate.

What is shown in this illustration represents what we demonstrated

in a single configuration on the test stand during this program, but is

not the best that can be attained with the current technology. For example,

it was shown earlier that higher compression ratio helps HC as well as SFC,

but because separate investigations were proceeding in parallel, higher

compression ratio was not tested on the best configuration. Other tests

run concurrently showed the higher extreme low end hydrocarbons respond

favorably to moderate inlet throttling, with relatively small penalty of

other parameters. One of the most significant improvement trends at this
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The underlying premise is that the pilot
performance (shown on "Indicated" basis to illustrate the below-idle, or

coasting performance, as well) prior to the point where the main nozzle

begins to inject fuel, generally determines the curve shape and location.

This continuum of "pilot" and "pilot plus main" is shown, on a specific

HC basis only, for both the standard BTC pilot configuration shown in

Figure 22 and a modified reversed arrangement where the pilot geometry

was different by virtue of recessing the nozzle/plug cavity farther back

into the housing. When a similar pilot geometry is used at this reversed

location, to give direct upstream injection, the "pilot only" base specific

hydrocarbons are lower, presumably because direct rotor surface impingement

is reduced.

low end is to be derived from nozzle orients-
b t mentations, particularly the

pilot, which minimize spraying „ the

Figure 29 indirectly indicates possible <

shifted to the other side of the engine's minor

the balance of

has not yet been determined.

The "1976" fuel consumption comparison of Figure 23 is compared with

representative automotive Diesel data in Figure 30.

In conclusion, the work that has been done indicates that if the

Positive trends of higher compression ratio and geometry refinement are

combined in one configuration and tested with a minor degree of low end

inlet throttling, HC data better than existing automotive engines can be

realized. Since NO* is inherently low in all Rotary Engines, including
stratified charge' version, and CO is low in this and any engine

operating at diesel-range mixture strengths, the emissions po
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r u- • +h-ic omission picture with light weight, compactattractive. Combining this emission picuu
dimensions, wide fuel range, and low fuel consumption in one engine

package has to merit serious consideration for all future transport

applications.

Aircraft Engines

An obvious need for small light weight, high performance engines exists

for aircraft propulsion. Initial interest at Curtiss-Wright was towards

propeller driven or helicopter military aircraft applications where the

RC Engine could compete with small gas turbines. The rotary s superior fuel

consumption characteristics, flexibility and low inertia matching advantages,

reduced "hot day" power loss, ease of starting, throttle response, sound

attentuation potential, and lower cost compensated for the simple (unregen­

erated) turboshaft gas turbine's bare engine weight differential. Further­

more, the RC Engine plus fuel weight usually proved lighter in all but very

short missions as noted in the ref. 1971 NASA study.

During the course of the RC2-90 (Figure 20) stratified charge air­

cooled engine development, acoustic measurements were made on our test

stands. These data confirmed the potential for extreme low noise level

power plants for military operations. These findings and additional

theoretical studies led to a U. S. Navy sponsored acoustic test series

with the RC2-60 in the Lockheed Q-Star aircraft (Figure 8). This

aircraft, which, incidentally, became the first to use a Wankel-type engine

for completely powered flight, demonstrated hitherto unattained levels of

quiet flight (Figure 31). A large low-speed belt-driven propeller and

compound muffling (Figure 32) were employed butthe RC Engine's strongest

virtue was its absence of valve and drive „ ■
ana drive gear noise. In addition, the

power was increased over the air jr cooled reciprocating engine it replaced
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2 plus fuel weight usually proved lighter inall&f

by 85% at an aircraft weight increase of only 6%

Successful conclusion of this test led to a second quiet-airplane

research contract, based on use of production aircraft, with the Cessna

Cardinal (Figure 9). This test series also demonstrated capability of

meeting the sound level goals established by the U. S. Navy for this

airplane category (Figure 33). Since that time, the engine has been

flown in a Cessna Cardinal with a single stage speed reduction at conventional

propeller speeds (Figure 34) and in a Hughes model TH-55 helicopter (Figure 10).

All of these tests were performed using the same RC2-60 basic liquid-

cooled engine which was designed in 1963 for automotive testing and, as

pointed out earlier, not ported for aircraft. Although the tests were run

for acoustic data, they indirectly demonstrated that liquid cooled RC

Engines were fundamentally reliable (although we did learn that our

modified automotive ignition switching unit was not) and provided a new 

’-oted in the ref. 1971 NASA study. level of smooth, vibrationless, quiet flight, combining the noise 

d fTight

31)-

jure

• of

proPel e

.-e it*
enJ’"4

.rse of the RC2-90 (Figure 20) stratifiedcharje;
opment, acoustic measurements were made ono«rt

. fial for extreme low noise F
confirmed the poten

These findings and a
itary operation . _ test^

U.S.

he Lockheed a,rc'

„ „v Lecame the f’ri‘

'den castrated

n0,se'

va've a" 0>ed

the air-coo

attenuation of a cooling fluid "blanket" and an "enclosable" engine with

the higher efficiency and greater flexibility of liquid cooling. In

addition to the breathing limitations of low-overlap side porting which

restricted BMEP's and thus mechanical efficiencies, to levels inappropriate

for aircraft, the propeller installations suffered both weight and

efficiency disadvantages with the two stage multi-belt speed reduction.

The RC2-60 configured for flight testing, complete with aircraft

carburetor, modified igntion, and appropriate manifolding, is shown in

Figure 35. Our attempts to adapt an automotive C-D ignition system to

dual control box reliability, via a switch, proved a mistake and the

n.. -in cpveral problems. Ironically, we haveswitching box itself resulted in several pru
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not had trouble in other field test installations with our standard automatic

coil and distributor ignition system. The test stand performance is shown

in Figure 36. This engine's limitations as an aircraft powerplant, aside

from the obvious lack of reduction gear, are primarily due to its side porting

designed for low overlap and a top speed of 5000-5500 RPM. To better

illustrate the potential that a speed increase with peripheral ports can

offer, Figure 37 shows data from an RC1-60 with peripheral ports and a

moderate speed increase. The ports could be opened more, allowing a higher

power peak. However, this test shows that over 320 HP from the RC2-60,or

400 for an RC2-75, can be achieved at 7000 RPM.
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Conversion of this automotive engine to a gasoline General Aviation

prototype, the RC2-75 reflected our experience with these RC2-60 tests.

Propeller shaft reduction (.365:1) is by integral spur gears. The reduction

drive and general configuration approach were reviewed with Piper, Cessna,

to“re50f

Ite «-’s ~

Mh Winches. The engine, shown on a propeller sran.

Rotary allow it to

,]] dimensions ar

Beech, the FAA, and accessory suppliers during the design process.

The peripheral intake porting was a must not only for higher volumetric

efficiencies which enable the initial conservative power rating of 285 HP

to be attained at modest speeds but, more importantly, because it allows

future growth to significantly higher ratings, with and without accompanying

speed increases.

One of the reasons liquid cooling was chosen for General Aviation is

that as the power output increases, air cooling becomes more difficult and

the percentage of useful power that shows up as cooling power (or as parasitic

drag) increases significantly; efficient liquid cooling, even,at the

initial ratings of the RC2-75 in the 300 HP class, results in roughly half

the cooling loss of current air-cooled reciprocating engines and also provides

conservatively low metal temperatures in the highest heat zones. The liquid
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The basic size and weight features of the Rotary allow it to remain

comoetitive with liquid cooling. The RC2-75 overall dimensions are

21.5 x 23.7 x 31.4 inches. The engine, shown on a propeller stand in

weighs 280 pounds dry and 385 pounds ready to fly "wet," com-

heat exchangers. At the current stage of development, with

test hours, including 100 hours at wide open throttle and testing

of this

C2-75

X J
wtU„. ’*»

Figure 38,

plete with

about 1500

to 7000 rpm, the basic RC2-75 structural integrity is considered sound.

Because of the 40,000 hour test background on the baseline 60 cubic inch

size, relatively few durability problems are anticipated during the thousands

an p>C1

Ports

t6st Sho,

achieved

cooled engine can operate in an aircraft at the same specific fuel con­

sumption figures that can be demonstrated on a test stand, whereas air­

cooled reciprocating engines generally require a richer mixcure to keep

head temperatures to acceptable levels under certain power conditions.

Other reasons include the economic differential possible with a simpler

automotive engine type cooling system which can function effectively at

aircraft outputs, as well as the advantages of safe cabin heat. Airframers

have also pointed out that the possibility of remote location of the

relatively small coolers allows packaging advantages such as airfoil surface

coolers and, in other cases, thrust recovery at the heat exchanger cooling

air outlet.
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of additional test hours we would want to run before certifying the engine

although the present design could probably pass a 150 hour qualification test

at this point. However, during this reliability testing phase, finalization

of compression ratio and related performance refinements would also be resolved

The Rotary Aircraft Engine is also attractive from an exhaust emissions

standpoint. Tests of the RC2-75 have been run for NASA last year. The
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results (Table H show that, without exhaust after-control devices or

departure from desired mixture strengths and ignition timings, the engine

meets the previously proposed 1980 limits on CO and N0x and comes very close

to meeting HC. As noted, the HC excess occurs at the low power end where

peripheral intake porting is at a particular disadvantage.

Curtiss-Wright is now under contract to evaluate modifications which

we believe will bring all emissions within these limits. The most important

changes involve adding side inlet ports which could be configured to

operate alone at idle and taxi with the peripheral ports closecf, and

with the ignition changes mentioned earlier in this paper, which have

been effective in improving low power firing regularity in our automotive

prototypes.

Low hydrocarbons in an aircraft rotary may appear as a contradiction

for
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to the automotive experience but, again, performance is a function of the

operating regime of the engine. The higher HC levels of the automotive

rotary are an issue at the lower power and low speed end. Figure 39

compares the RC2-60U5 with an uncontrolled automotive engine of the same

era, both tested at the University of Michigan, and shows the relative

trends at higher powers and speeds. We theorize that the better apex

sealing at high speed is a key factor but the influence of higher exhaust

gas temperatures and the Rotary's close-coupling from port to exhaust

manifold encourages thermal after-reaction.

The RC2-75 as tested last year had the original 7.5:1 compression ratio

which was chosen at the time of design to take advantage of the less ex­

pensive 80/87 octane aviation fuel, which also contained less lead. The

compression ratio is likely to increase in the finalc rinai enqine version, for
fuel economy reasons developed in succeedinq nara u

19 para->although the degree has not
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The wide open throttle 7.5:1 compression ratio performance of the

RC2-75 is shown in Figure 40. The power drop-off above 5500 RPM is a

function of port sizing; the power curve could be continued along the

lower slope with slightly larger ports. The throttling restriction

partially reflects conservatism and the desire to obtain user/flight

experience with a moderate initial rating, although better fuel consumption

can be obtained with increased power. The design decision at the time also

reflected a desire to avoid the higher IMEP's and a possible dependence on

the more expensive detonation gun trochoid coatings; more recent cost

estimates, as well as technological advances in plasma spraying, have shown

this issue to be less significant today.

The cruise fuel consumption of the single rotor RC1-75 engine, which

as discussed earlier^ is transferrable to the 2 rotor engine, is shown in

Figure 41. The one point plotted for the RC2-75 test engine is consistent

with the comparable RC1-75 curve. The other curves illustrate improvements

Possible with an 8-.5:1 compression ratio, rotor pocket changes (symmetrical

cut-out versus removal of trailing section material to reduce quench)

the strong effect of bringing the spark plug electrodes closer to

^ochoid surface. The configuration represented by the lowest of these

curves will be run in this year's second phase emissions test on the RC2 75.

The influence of engine rating and compression ratio upon fuel consumpti

has been discussed qualitatively. Figure 42 attempts to relate thes 
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and compare them to manufacturer's published data for engines in the

same power class. The .54 BSFC point at 75% cruise represents status

of the 7.5:1 compression ratio RC2-75 emissions tested last year.

The drop to below .48, without a compression ratio change, by bringing

the spark plug electrodes closer to the surface, is based on the test

runs plotted in Figure 41. The one compression ratio increase is

expected to bring this point close to the .46 line. However, the engine

will still be at a relatively low BMEP point consistent with 285 HP

0 6000 RPM. If the engine rating is increased to, say 285 HP at

5500 RPM or 330 HP at 5500, both attainable naturally aspirated, the

curves pass through the distribution of Lycoming 10-540 models at com­

parable compression ratios. Since the Rotary enjoys a detonation

margin advantage over the piston engine, a 9.5:1 compression ratio is

not unreasonable for 100/130 aviation fuel. The effect of engine mean

effective pressure alone is shown more clearly by the curve to the

right. In this case, the RC2-75 is shown only for 9.5:1 compression

ratio. It can be seen that as the BMEP reaches the general level of

the A, B, E and G models of the 10-540, the RC2-75 projected fuel

consumptions are relatively close.

The fact that the brake specific fuel consumptions, for the same

compression ratio, correspond closely at the same BMEP level implies

that a comparison on an Indicated basis, reflecting only the events

within the combustion chamber, is also comparable. For this to be the

case, the friction horsepower (FHP) between engine types would also have

to be comparable. Very little data for reciprocating aircraft engines

is available, but the calculations we have made indicate that the FHP,
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engine types are similar in the aircraft engine mode, the obvious «v

to improve fuel consumption is by running at higher outputs (BMEP's)

if we exclude additional combustion improvements. This is not to say that

future improvements in thermal efficiency and reductions in mechanical fric

tion for the RC2-75 are ruled out, since some will occur, but a realistic

appraisal says that significant additional gains in both of these areas

are difficult to come by.

While the Rotary is believed to have an inherent edge over the

reciprocating engine at sustained high output, any Otto cycle engine

has to work at higher temperatures, pressures, and relatively higher

component stresses as the BMEP, a direct index of how hard the engine

is "working," rises. And there are few spark ignited engines anywhere

that operate at higher BMEP's than aircraft engines. Whatever the

degree, the trade-off has to be fuel consumption ,versus relative

engine life and reliability. Since the liquid cooled rotary aircraft engine

has power output capabilities beyond the air-cooled engine and the thermal

efficiencies are comparable to reciprocating engines as stated above, the

fuel consumption potential of the high output liquid cooled engine is

clearly more favorable.

Ratified Charge Aircraft Engines

All discussion of aircraft engines to this point was for homogeneous

charge machines. A direct-injected unthrottled Stratified Charge Rotary

offers the advantages of safer Diesel fuel (or a middle distillate chosen

to optimize refinery output) and better SFC, but performance-wise, it has
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The gasoline Rotary Aviation Engine, such as the RC2-75, has two
growth modes: higher output by allowing the engine to intake the full
amount of air that it is capable of aspirating, or else higher speed.
Which route, or what combination, is a function of whichever trade-offs
of cruise BSFC vs. lighter engine specific weight are most attractive for
a given application. However, the Stratified Charge Engine is more akin
to the diesel, where the maximum power per pound of air is some 10 - 20%'
less than the homogeneous charge engine because efficiency is lost beyond
a certain mixture strength which is generally leaner than stoichiometric.
In the case of this engine, turbocharging is, therefore, not only a means
of achieving the power rating of the same displacement homogeneous charge
engine and the required critical altitude, but is the obvious way to improve
SFC. Figure 43 illustrates the effect of reducing engine displacement, for
the same power output, as the degree of turbocharging is increased. If
we assume equivalent overall compression ratios and ignore the small
specific friction changes with size, the decrease in BSFC with increased
charging results from increasing the mechanical efficiency. This is also
reflected in the operating mixture strength as can be seen from the F/A curves
The concept of increasing mechanical efficiency by upping the output is not
unique to Stratified Charge but the fuel consumption limiting BMEP is lower
than it is for the homogeneous charge version. Alternatively, the engine
displacement can be increased to maintain the same output but either way there
will be some weight penalty. The sea level blown engine will be heavier be­
cause of the slightly larger turbocharger in addition to the delta for the
high pressure injection pumps, but the package can still be attractive be­
cause of the competitive margin that was available at the outset.

S,"are considered i

:*^lopment

but

k?1”'i.

that

not tested

thus

tolled ,

'1S s°mewhat

6!1Ep rat-
S. T,

n«ms for homogeneous charge engines. A possible <

shown in Figure 44. Figures 45 am

^'/toother sizes. Spee,

— ^ncurrenttechnoiog;

sWeds to 12,000

3PeX which

"Mucin, fri-
y rriction.

J 9ap is „
twsidened

d1ffere"t th.

thp
Creased rati 6 d1

In ^thncreaSe . h sPeec

p^sure " '“"Ponent

, ° Li
1s he,

• - although n
; ^p^n,t,e5,a ■

^Id^neis predicated upon cont

^Z ^eiectroaie-i injection

. t the world. While we have run Diese J
throughout the wor
111, is >t or close to the limit. Projections

deified charge aircraft engines are given in referen



has two
full

speed,
trade-off;

^ost attractive for
-ine is more akin

- zor

same
1n^
and

3 win

smep <’
*e,,x

• H be heaV’erbe
wiH be , r the
the^>

■ ? attract

outset-

cs a"d wm r
fni1^ CarH

CarbUreted
be d°ie to ri

Plication h el —
0,1 > but the f

W”1 be in an f“6'

3n Engine

65 rat
J°- ’*W M*

'op data <
( 1nPUts <-

a"to«„ht,

a”»“’"g'Ce„;LthrK-7s-^
of

'■ ” a funct’°" of uhfche<eerr

e sPecific weight are r„-
-•he Stratified Charge Engi •

i power per pound of air is some 10
engine because efficiency is lost beyond
is generally leaner than stoichiometric,

jcharjino is, therefore, not only a means
the same displacement homogeneous charge
altitude, but is the obvious way to improve

effect of reducing engine displacement, for
jree of turbocharging is increased. If

)ression ratios and ignore the

.•ze, the decrease in BSFC ,s0
the mechanical efficiency. J

e strength as can be seen

cal efficiency by “PJ”™

be fuel consumption'"'
ar9e —’<’"• "’Xb"*''* -

aintain thes« « ' ..

Sea level b'o«n o"”

charger in M
the paebo’O "" jt the c

at was available at

Insofar as turbocharging for critical •y critical altitude is concerned, both the
homogeneous and stratified charge engines respond in similar fashion

and are not different from conventional piston engines. The optimum

degree of sea-level turbocharging for the Stratified Charge version

is less apparent at this stage.

Higher Speed

Both engines have speed growth possibilities, although RPM growth

for the high pressure injected engine is predicated upon continued

development of any of the several electronic fuel injection techniques

now in work throughout the world. While we have run Diesel jerk-pumps

at 6000 PPM, this is at or close to the limit. Projections for higher

speed stratified charge aircraft engines are given in referenced NASA

reports by Lockheed-Georgia, but the trends are similar to the

following curves for homogeneous charge engines. A possible growth

scenario for the RC2-75 is shown in Figure 44. Figures 45 and 46

expand the 10,000 RPM seal speed family to other sizes. Speeds up to

10,000 RPM are considered realizable within current technology limits

but do require development. Rotational speeds to 12,000 RPM are

predicated upon designed but not tested apex seals which retract from

trochoid contact at high speed, thus reducing friction. Since leakage

is a time function, a small controlled gap is considered acceptable.

The trade-off here is somewhat different than the one discussed

earlier for BSFC vs. BMEP rating. Increased rating with speed can

be accomplished with only a moderate increase in component stresses

r x- r^occurp (IMEP) is held to reasonable
if the Indicated mean effective pr

• «« that the brake fuel consumption
limits. However, there is no way
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can be prevented from increasing with speed even though the rate of

increase is less for the Rotary. Primary use of this capability

would, therefore, be for improved take-off and climb performance

of a given sized engine where cruise would then be at a lower than

typical percentage of maximum speed.

Closure

The Rotary Engine has been developed to the point where it is

a viable powerplant capable of a wider application range than any

engine in use today. General Aviation usage is the most obvious

application within this range.
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285 BHP CURTISS-WRIGHT RC2-76 ENGINE NO. 7521^
XHAUST EMISSIONS TEST RESULTS

(Ignition Timing, 35° BTC)

IDLE TAXI TAKEOFF CLIMB APPROACH
2.4
3.2

21
28

215 170 85
1330 2660

288
6000

228
5400

114
5200

142.000
10.800
13.148

406.000
29.600
13.716

2,320.000
169.000

13.728

1,840.000
134.000

13.731

1,160.000
85.000
13.647

6.200 10,700 12.750 12.750 12.4004.400 3.000 2.900 2.900 3.300
38,571.000 10,950.000 600.000 780.000 840.000

6.750 2.400 0.000 0.000 0.000
6.300 43.000 550.000 760.000 127.000

0.92037 0.89099 0.86517 0.86486 0.86301

12.95457 13.68732 13.34775 13 33008 13.15666
12.80934 13.30191 13.21285 13.21261 13.10602

0.07374 0.07437 0.07439 0.07439 0.07430
2.88589 2.31574 0.72492 0.74737 0.50824
6.09172 11.36507 60.94562 48.31582 34.64385
0.00155 0.02997 2.18987 2.39977 0.25323

0.09620 0.54034 0.00362 0.06228 0.05082
0.20306 2.65185 0.30473 4.02632 3.46439
0.00005 0.00699 0.01095 0.19998 0.02532

DEMONSTRATED EPA STANDARD

0.00264 0.0019
0.03737 0.0420
0.00085 0.0015
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Figure 1. - Specific weight comparison with turboshaft
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gure2- - Apex seal wear, RC2-6a
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Figure!-SFCtest results, January 1963, RC1-60.
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Figure 4. - Basic engine components, RC1-60.
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Figure 5. - RC2-60U5 automotive engine prototype.
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Figure 6. - RC2-6O part load fuel consumption.
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Figure 7. - Automobile fuel economy with RC2-6O and standard

V-8 production engine.
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Figure 8.• - Lockheed Q-Star airplane with RC2-60 engine.
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fi9ljrel(l. - Hughes helicopter with RC2-60 engine.
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Figure 10. - Hughes helicopter with RC2-60 engine.
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Figure 12. - RCl-1920 engine, assembly of power section.

Figure 11 - RC4-60 engine, three-quarter, ear view, carburetor side.
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Figure 14 - RC2-75 engine.
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Figure 16. - Stratified charge combustion cycle of rotating combustion engine.
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Figure 17. - Stratified charge processes.
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Figure 19. - Stratified charge RC engine, co-planar injection.
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Figure 23. - Current status of fuel consumption for

stratified charge rotary engines.
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Figure 25. - Effect of compression ratio on fuel consumption
and exhaust hydrocarbons.
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Figure 26. - Bolt-on hot insert rotor.
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hot-insert rotors.
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Figure 27. - Specific hydrocarbon emissions with standard and
hot-insert rotors.
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2000 RPM
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Figure 29. - Indicated specific hydrocarbon emissions comparison of different
pilot locations.

Figure 30. - Part load fuel consumption.
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Figure 34. - Cessna 177, standard propeller speed installation.
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Figure 35. - RC2-60-Y8 engine, aircraft carburetor, modified ignition, and manifolding.
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Figure 37. - RC1-60, peripheral port engine, performance at higher speeds.

Figure 38. - RC2-75 engine on propeller test stand.

170

'■‘stmt"-013’'*



Figure 39. RC2-60U5 and automotive V-8 engine raw emissions as function
of engine speed.
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Figure 40. - RC2-75 full throttle performance, 7.5:1 compression ratio.
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Figure 41. - RC1-75 cruise fuel consumption.
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Figure 42 - RC2-75 cruise fuel consumption as function of engine compression
ratio and rating.
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engine requirements for future general

aviation aircraft

Joseph W. Stickle
NASA Langley Research Center

The emphasis of papers in this symposium has been on rotary engine

test experience with projections of technology improvements that make the

rotary concept very attractive for aircraft applications. The market

and competition for the rotary engine, however, is not today's aircraft

fleet nor the current technology piston or turbine engine. Each of these

factors will be changing to adapt to economic and environmental constraints

of the future. The intent of this paper is to examine the market place

for general aviation aircraft into 1980's and indicate the visible

constraints that engine manufacturers regardless of the type of cycle

will have to face.

Since 1972 the general aviation industry has enjoyed a steady and

healthy expansion, approaching 15 percent per year. Projections by

Government and industry indicate a continued growth through the 1980's

with guarded optimism over fuel costs and availability and noise constraints.

Figure 1 illustrates the growth in sales value over the past several years

and indicates the growing importance of general aviation to the U.S.

aerospace economy. Last year for instance, general aviation sales exceeded

$1.5 billion which is about one-half of the value of transport aircraft

sales. General aviation also contributed about $0.5 billion in favorable

balance of trade with 25 percent of the over 15,000 aircraft manufactured

in 1977 being exported.

175



The world-wde fleet of general aviation airplanes now exceeds

250,000 airplanes with the U.S. fleet being the single largest at

161,000. Figure 2 shows the projected growth of the U.S. general

aviation fleet to reach about 245,000 by 1985 or almost equal to today's

world fleet.

In order to maintain perspective, however, one might recall that

in 1975 there were 6.8 million U.S. automobiles manufactured and

that by 1985 the manufacturing rate is projected to increase to 9.2

million per year. The point is that while the aircraft fleet has a

healthy growth projection, the total aircraft engine market is very

small compared to the automotive market. This added to the fact that

airplane engines have historically been better maintained and tuned than

automotive engines indicates a formidable challenge for the introduction

of any alternate engine cycle into the aircraft market.

A factor in the projected fleet which could favor the rotary engine

is the trend in utilization of general aviation. General aviation is

a

An

o?e’

he

.ess

depend

indicate

. 19S7. In

. ac nercent.
—iprs about «a r 65 percent-

genera! aviation for busw

reliability and service

Following this trend will be an
Tssurized aircraft and air condition systems for i

•sfortwhich add to the auxiliary power requireme

horsepower off the propulsive engine. T'

’?*rotary engines would appear to have an ac

9 j ther

Jpather'
<• *e

re 3

r*

UtiKS.

involved in the eight classes or categories of flying including: personal
-wginefOT power extraction due to their lighter

transportation, business, air taxi, and rentals for the commuter aircraft, is a function of the horsepower are shown
special purpose aircraft (such as pipeline survey and agricultural aircraft),

instructional, sport, and proficiency flying. About 65 percent of general

aviation flying is spent in what is called point-to-point travel. That is,

the person who wants to get in his airplane and go from point A to point B

and get there safely, reliably and these days more economically. Operating

economy or efficiency will be a key factor in the future of the general

aviation. Business flying appears to be the largest single growth area.
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With the airlines dropping service to the lower density ^unities, genera!

aviation business flying will pick up. The businessman is more schedule

dependent than the pleasure flyer and therefore is more likely to be

equipped for flying in adverse weather.

FAA projections shown in figure 3 indicate a two-fold increase in

instrument operations between 1975 and 1987. In 1975, general aviation

accounted for about 45 percent of the instrument operations in the

United States and the air carriers about 45 percent. But by 1986

general aviation is projected to grow to about 65 percent. The trend

is clearly toward the use of general aviation for business and

transportation where schedule reliability and service dependability are

of prime importance. Following this trend will be an increase in the

number of pressurized aircraft and air condition systems for improved

safety and comfort which add to the auxiliary power requirement. This

means taking needed horsepower off the propulsive engine. Turbines and

perhaps high power rotary engines would appear to have an advantage over

the piston engine for power extraction due to their lighter weights. Trends

in engine weight as a function of the horsepower are shown on figure 4 for

Piston and turbine engines. Piston engine weights fall between 1.5 and 2

pounds per horsepower while the turboprop engines are slightly less than

1 pound per horsepower. One of the rotary engine goals mentioned

earlier paper at the symposium was 1 horsepower per pound. This

achievement in a reliable, cost competitive version would provide a real

challenge for the aircraft engine market.
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Turning now to constraining factors for aircraft of the future,

environmental impact appears to be a major concern. Recent federal

actions have removed the emissions standards for general aviation piston

engine aircraft, but the noise constraint continues to increase. The

current FAA flyover noise rule for propeller-driven aircraft (FAR 36-F)

is shown in figure 5. Noise measurements of the current general aviation

fleet fall within a band of about - 5 db from the noise rule as indicated by

the shaded area. There have been several programs from early 1940's up to

very recently involving experimental vehicles in which the engines have

been highly muffled and the propellers have been slowly rotated to reduce

levels to 70 db or below. The performance and cost penalties for this

level of suppression would be prohibitive to the utility of the general

aviation aircraft and to its sales in today's market. As a matter of

reference the lower shaded area shows the level of non-propul sive or

aerodynamic noise associated with this class of airplane and indicates

that the noise which is of concern to the airport and surrounding communities

is related to the propulsion system. NASA, in its noise reduction research,

is now concentrating on technology that will provide up to 5 db reduction

with a minimum of penalty that can be applied to aircraft over the next

decade. Examples of this research include development of more efficient

propellers, evaluating free versus shrouded propulsion systems and techniques

to quieten the engine noise.

Interior noise is also seen as a major constraint as general cabins

are recognized as a high noise environment for both crew and passengers

in a comparison of public transportation modes. The same technologies that

reduce exterior propulsion noise should also improve interior noise levels

although additional treatment to the airframe and cabin environment is

needed and is being researched.
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Efficiency is a second major constraint seen for general aviation.

From a historical view, the improvement in aerodynamics for general

aviation aircraft have not been overly impressive. Figure 6 shows the

trend in lift-to-drag (L/D) ratio, which is a measure of the efficiency

that has evolved since the very early 1920's. These aircraft have

maximum L/D's in the order of 8 to just over 14. As a point of comparison

the L/Dmax for some of the transport aircraft of today are in the range

of 16 to 18 so there is room for improvement and a potential for advanced

future general aviation aircraft that operate at L/D's of 18 to 20.

Some recent examples of aircraft good aerodynamic design and

innovation include the Bellanca skyrocket and the Vari-Eze. Both of these

are all composite airplanes. The skyrocket, figure 7, holds the world

speed record for a piston engine airplane of 327 miles an hour. Its

cruise drag coefficient is comparable to today's modern jet transports.

Figure 8 is a photograph of the Rutan Aircraft Company's Vari-Eze airplane.

It has a very high aspect ratio, a lifting canard in front of the wing

which eliminates the download carried by a conventional tail, and it

incorporates other advanced aerodynamics, such as winglets and a new

airfoil section. The Vari-Eze cruises at 138 miles per hour on a 75

horsepower motor and is reportedly achieving over 70 miles per gallon.

A third consideration of efficiency is one I call payload carrying

efficiency. Figure 9 is a plot showing the fuel mileage versus payload

at maximum fuel load for various aircraft. The typical piston powered

single-engine airplanes are providing from 10 up to 18 or 19 mile P

„ • .i in terms of personal transportation but
gallon which is pretty economical in te
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with payloads generally less than 1,000 pounds. Adding a second engine

to the airplane does not necessarily result in greater payload, but it

does cut the fuel efficiency at least in half. For turboprop powered

aircraft, the fuel efficiency drops to a level of between 5 and 2 miles

per gallon. There are airplanes flying today that are so weight limited

that if loaded to full fuel there is no payload at all. In this case

the crew establishes the payload and then must determine the range that

it will be carrying. An interesting thought for the future involves the

tradeoff between reliability and operating cost of a twin-engine piston-

driven aircraft compared to a single-engine turboprop. The turboprop

engines have a much higher time between overhaul and are noted for very

high reliability. Single-engine turboprops are being used in the

agricultural industry with surprisingly good success. There are about

7,000 aircraft in the U.S. agricultural aircraft fleet and about 1,400

of them are produced each year. These airplanes,when they are working,

operate 16 to 18 hours a day. Their average flight time is 10 to 15

minutes, and some are as low as 3 minutes. Almost 80 percent of the

flying time in agricultural spraying is spent in nonproductive flying,

that is, turning around in the field and flying back and forth from the

field to the home base. Only 20 percent of the time is actually spent

spraying. So engine economy and reliability are key factors in this

business.

Typical engines range from 300 to 900 horsepower with the higher

power engines being world war vintage radial engines. These are no

producers of new radial engines in the United States today. The need

for an engine in this horsepower class (between 400 and 900 horsepower)

is illustrated by the Ag industry.
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Many operators are converting to turbine engines despite the higher

initial cost. Experience is showing that the turboprop actually becomes

profitable in about 21/2 years. The incremental cost may be $75,000

to $100,000 for the conversion. The turboprop is proving to provide

added power and payload across the field, and a quicker turn time. Those

little 10 to 30 second increments that are saved because of the added

power and added response of a variable pitch propeller tend to pay off in

productivity of the aircraft.

In conclusion, the numbers of aircraft and the growth rate of the

industry over the next decade look very favorable. Constraints to the

industry include noise and fuel efficiency which are both subject to

technology improvements. The trend in general aviation flying appears

to be more toward instrument operations with the aircraft role becoming

transportation oriented. Safe, reliable high horsepower engines are

needed to allow higher power extraction for pressurization, air

conditioning and other auxiliary systems as well as for special purpose

aircraft such as used in the agricultural mission.
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Figure 5. - Noise levels of small propeller driven vehicles.

Figure 6. - Trends in maximum lift-drag ratio of propeller driven aircraft.
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Figure?. - Photograph of Bellanca Skyrocket.
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A 1-day symposium on the state of development of the rotary combustion engine was held on
February 28, 1978, at the Lewis Research Center, Cleveland, Ohio. Guest speakers from
Japan, Germany, and the United States presented the latest developments in rotary engines for
aircraft and automotive applications. NASA speakers presented the non-turbine-engine
research programs for general aviation and discussed future requirements for general aviation
powerplants. This proceedings includes the seven papers that were presented.
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